⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 operation.hpp

📁 CGAL is a collaborative effort of several sites in Europe and Israel. The goal is to make the most i
💻 HPP
📖 第 1 页 / 共 3 页
字号:
    // Dispatcher    template<class V, class E1, class T2, class F2, class IA2, class TA2>    BOOST_UBLAS_INLINE    V &    axpy_prod (const vector_expression<E1> &e1,               const compressed_matrix<T2, F2, 0, IA2, TA2> &e2,               V &v, bool init = true) {        typedef typename V::value_type value_type;        typedef typename F2::orientation_category orientation_category;        if (init)            v.assign (zero_vector<value_type> (e2 ().size2 ()));#if BOOST_UBLAS_TYPE_CHECK        vector<value_type> cv (v);        typedef typename type_traits<value_type>::real_type real_type;        real_type verrorbound (norm_1 (v) + norm_1 (e1) * norm_1 (e2));        indexing_vector_assign (scalar_plus_assign<typename vector<value_type>::reference, value_type> (), cv, prod (e1, e2));#endif        axpy_prod (e1, e2, v, orientation_category ());#if BOOST_UBLAS_TYPE_CHECK        BOOST_UBLAS_CHECK (norm_1 (v - cv) <= 2 * std::numeric_limits<real_type>::epsilon () * verrorbound, internal_logic ());#endif        return v;    }    template<class V, class E1, class T2, class F2, class IA2, class TA2>    BOOST_UBLAS_INLINE    V    axpy_prod (const vector_expression<E1> &e1,               const compressed_matrix<T2, F2, 0, IA2, TA2> &e2) {        typedef V vector_type;        vector_type v (e2 ().size2 ());        // FIXME: needed for c_matrix?!        // return axpy_prod (e1, e2, v, false);        return axpy_prod (e1, e2, v, true);    }    template<class V, class E1, class E2>    BOOST_UBLAS_INLINE    V &    axpy_prod (const vector_expression<E1> &e1,               const matrix_expression<E2> &e2,               V &v, packed_random_access_iterator_tag, column_major_tag) {        typedef const E1 expression1_type;        typedef const E2 expression2_type;        typedef typename V::size_type size_type;        typename expression2_type::const_iterator2 it2 (e2 ().begin2 ());        typename expression2_type::const_iterator2 it2_end (e2 ().end2 ());        while (it2 != it2_end) {            size_type index2 (it2.index2 ());#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION            typename expression2_type::const_iterator1 it1 (it2.begin ());            typename expression2_type::const_iterator1 it1_end (it2.end ());#else            typename expression2_type::const_iterator1 it1 (boost::numeric::ublas::begin (it2, iterator2_tag ()));            typename expression2_type::const_iterator1 it1_end (boost::numeric::ublas::end (it2, iterator2_tag ()));#endif            while (it1 != it1_end) {                v (index2) += *it1 * e1 () (it1.index1 ());                ++ it1;            }            ++ it2;        }        return v;    }    template<class V, class E1, class E2>    BOOST_UBLAS_INLINE    V &    axpy_prod (const vector_expression<E1> &e1,               const matrix_expression<E2> &e2,               V &v, packed_random_access_iterator_tag, row_major_tag) {        typedef const E1 expression1_type;        typedef const E2 expression2_type;        typedef typename V::size_type size_type;        typename expression2_type::const_iterator1 it1 (e2 ().begin1 ());        typename expression2_type::const_iterator1 it1_end (e2 ().end1 ());        while (it1 != it1_end) {            size_type index1 (it1.index1 ());#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION            typename expression2_type::const_iterator2 it2 (it1.begin ());            typename expression2_type::const_iterator2 it2_end (it1.end ());#else            typename expression2_type::const_iterator2 it2 (boost::numeric::ublas::begin (it1, iterator1_tag ()));            typename expression2_type::const_iterator2 it2_end (boost::numeric::ublas::end (it1, iterator1_tag ()));#endif            while (it2 != it2_end) {                v (it2.index2 ()) += *it2 * e1 () (index1);                ++ it2;            }            ++ it1;        }        return v;    }    template<class V, class E1, class E2>    BOOST_UBLAS_INLINE    V &    axpy_prod (const vector_expression<E1> &e1,               const matrix_expression<E2> &e2,               V &v, sparse_bidirectional_iterator_tag) {        typedef const E1 expression1_type;        typedef const E2 expression2_type;        typedef typename V::size_type size_type;        typename expression1_type::const_iterator it (e1 ().begin ());        typename expression1_type::const_iterator it_end (e1 ().end ());        while (it != it_end) {            v.plus_assign (*it * row (e2 (), it.index ()));            ++ it;        }        return v;    }    // Dispatcher    template<class V, class E1, class E2>    BOOST_UBLAS_INLINE    V &    axpy_prod (const vector_expression<E1> &e1,               const matrix_expression<E2> &e2,               V &v, packed_random_access_iterator_tag) {        typedef typename E2::orientation_category orientation_category;        return axpy_prod (e1, e2, v, packed_random_access_iterator_tag (), orientation_category ());    }  /** \brief computes <tt>v += A<sup>T</sup> x</tt> or <tt>v = A<sup>T</sup> x</tt> in an          optimized fashion.          \param e1 the vector expression \c x          \param e2 the matrix expression \c A          \param v  the result vector \c v          \param init a boolean parameter          <tt>axpy_prod(x, A, v, init)</tt> implements the well known          axpy-product.  Setting \a init to \c true is equivalent to call          <tt>v.clear()</tt> before <tt>axpy_prod</tt>. Currently \a init          defaults to \c true, but this may change in the future.          Up to now there are some specialisation for compressed          matrices that give a large speed up compared to prod.                    \ingroup blas2          \internal                    template parameters:          \param V type of the result vector \c v          \param E1 type of a vector expression \c x          \param E2 type of a matrix expression \c A  */    template<class V, class E1, class E2>    BOOST_UBLAS_INLINE    V &    axpy_prod (const vector_expression<E1> &e1,               const matrix_expression<E2> &e2,               V &v, bool init = true) {        typedef typename V::value_type value_type;        typedef typename E1::const_iterator::iterator_category iterator_category;        if (init)            v.assign (zero_vector<value_type> (e2 ().size2 ()));#if BOOST_UBLAS_TYPE_CHECK        vector<value_type> cv (v);        typedef typename type_traits<value_type>::real_type real_type;        real_type verrorbound (norm_1 (v) + norm_1 (e1) * norm_1 (e2));        indexing_vector_assign (scalar_plus_assign<typename vector<value_type>::reference, value_type> (), cv, prod (e1, e2));#endif        axpy_prod (e1, e2, v, iterator_category ());#if BOOST_UBLAS_TYPE_CHECK        BOOST_UBLAS_CHECK (norm_1 (v - cv) <= 2 * std::numeric_limits<real_type>::epsilon () * verrorbound, internal_logic ());#endif        return v;    }    template<class V, class E1, class E2>    BOOST_UBLAS_INLINE    V    axpy_prod (const vector_expression<E1> &e1,               const matrix_expression<E2> &e2) {        typedef V vector_type;        vector_type v (e2 ().size2 ());        // FIXME: needed for c_matrix?!        // return axpy_prod (e1, e2, v, false);        return axpy_prod (e1, e2, v, true);    }    template<class M, class E1, class E2, class F>    BOOST_UBLAS_INLINE    M &    axpy_prod (const matrix_expression<E1> &e1,               const matrix_expression<E2> &e2,               M &m, F,               dense_proxy_tag, row_major_tag) {        typedef M matrix_type;        typedef const E1 expression1_type;        typedef const E2 expression2_type;        typedef typename M::size_type size_type;        typedef typename M::value_type value_type;#if BOOST_UBLAS_TYPE_CHECK        matrix<value_type, row_major> cm (m);        typedef typename type_traits<value_type>::real_type real_type;        real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));        indexing_matrix_assign (scalar_plus_assign<typename matrix<value_type, row_major>::reference, value_type> (), cm, prod (e1, e2), row_major_tag ());#endif        size_type size1 (e1 ().size1 ());        size_type size2 (e1 ().size2 ());        for (size_type i = 0; i < size1; ++ i)            for (size_type j = 0; j < size2; ++ j)                row (m, i).plus_assign (e1 () (i, j) * row (e2 (), j));#if BOOST_UBLAS_TYPE_CHECK        BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());#endif        return m;    }    template<class M, class E1, class E2, class F>    BOOST_UBLAS_INLINE    M &    axpy_prod (const matrix_expression<E1> &e1,               const matrix_expression<E2> &e2,               M &m, F,               sparse_proxy_tag, row_major_tag) {        typedef M matrix_type;        typedef const E1 expression1_type;        typedef const E2 expression2_type;        typedef typename M::size_type size_type;        typedef typename M::value_type value_type;        typedef F functor_type;#if BOOST_UBLAS_TYPE_CHECK        matrix<value_type, row_major> cm (m);        typedef typename type_traits<value_type>::real_type real_type;        real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));        indexing_matrix_assign (scalar_plus_assign<typename matrix<value_type, row_major>::reference, value_type> (), cm, prod (e1, e2), row_major_tag ());#endif        typename expression1_type::const_iterator1 it1 (e1 ().begin1 ());        typename expression1_type::const_iterator1 it1_end (e1 ().end1 ());        while (it1 != it1_end) {#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION            typename expression1_type::const_iterator2 it2 (it1.begin ());            typename expression1_type::const_iterator2 it2_end (it1.end ());#else            typename expression1_type::const_iterator2 it2 (boost::numeric::ublas::begin (it1, iterator1_tag ()));            typename expression1_type::const_iterator2 it2_end (boost::numeric::ublas::end (it1, iterator1_tag ()));#endif            while (it2 != it2_end) {                // row (m, it1.index1 ()).plus_assign (*it2 * row (e2 (), it2.index2 ()));                matrix_row<expression2_type> mr (e2 (), it2.index2 ());                typename matrix_row<expression2_type>::const_iterator itr (mr.begin ());                typename matrix_row<expression2_type>::const_iterator itr_end (mr.end ());                while (itr != itr_end) {                    if (functor_type ().other (it1.index1 (), itr.index ()))                        m (it1.index1 (), itr.index ()) += *it2 * *itr;                    ++ itr;                }                ++ it2;            }            ++ it1;        }#if BOOST_UBLAS_TYPE_CHECK        BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());#endif        return m;    }    template<class M, class E1, class E2, class F>    BOOST_UBLAS_INLINE    M &    axpy_prod (const matrix_expression<E1> &e1,               const matrix_expression<E2> &e2,               M &m, F,               dense_proxy_tag, column_major_tag) {        typedef M matrix_type;        typedef const E1 expression1_type;        typedef const E2 expression2_type;        typedef typename M::size_type size_type;        typedef typename M::value_type value_type;#if BOOST_UBLAS_TYPE_CHECK        matrix<value_type, column_major> cm (m);        typedef typename type_traits<value_type>::real_type real_type;        real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));        indexing_matrix_assign (scalar_plus_assign<typename matrix<value_type, column_major>::reference, value_type> (), cm, prod (e1, e2), column_major_tag ());#endif        size_type size1 (e2 ().size1 ());        size_type size2 (e2 ().size2 ());        for (size_type j = 0; j < size2; ++ j)

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -