📄 sinc.hpp
字号:
// boost sinc.hpp header file// (C) Copyright Hubert Holin 2001.// Distributed under the Boost Software License, Version 1.0. (See// accompanying file LICENSE_1_0.txt or copy at// http://www.boost.org/LICENSE_1_0.txt)// See http://www.boost.org for updates, documentation, and revision history.#ifndef BOOST_SINC_HPP#define BOOST_SINC_HPP#include <cmath>#include <boost/limits.hpp>#include <string>#include <stdexcept>#include <boost/config.hpp>// These are the the "Sinus Cardinal" functions.namespace boost{ namespace math {#if defined(__GNUC__) && (__GNUC__ < 3) // gcc 2.x ignores function scope using declarations, // put them in the scope of the enclosing namespace instead: using ::std::abs; using ::std::sqrt; using ::std::sin; using ::std::numeric_limits;#endif /* defined(__GNUC__) && (__GNUC__ < 3) */ // This is the "Sinus Cardinal" of index Pi. template<typename T> inline T sinc_pi(const T x) {#ifdef BOOST_NO_STDC_NAMESPACE using ::abs; using ::sin; using ::sqrt;#else /* BOOST_NO_STDC_NAMESPACE */ using ::std::abs; using ::std::sin; using ::std::sqrt;#endif /* BOOST_NO_STDC_NAMESPACE */ using ::std::numeric_limits; static T const taylor_0_bound = numeric_limits<T>::epsilon(); static T const taylor_2_bound = sqrt(taylor_0_bound); static T const taylor_n_bound = sqrt(taylor_2_bound); if (abs(x) >= taylor_n_bound) { return(sin(x)/x); } else { // approximation by taylor series in x at 0 up to order 0 T result = static_cast<T>(1); if (abs(x) >= taylor_0_bound) { T x2 = x*x; // approximation by taylor series in x at 0 up to order 2 result -= x2/static_cast<T>(6); if (abs(x) >= taylor_2_bound) { // approximation by taylor series in x at 0 up to order 4 result += (x2*x2)/static_cast<T>(120); } } return(result); } }#ifdef BOOST_NO_TEMPLATE_TEMPLATES#else /* BOOST_NO_TEMPLATE_TEMPLATES */ template<typename T, template<typename> class U> inline U<T> sinc_pi(const U<T> x) {#if defined(BOOST_FUNCTION_SCOPE_USING_DECLARATION_BREAKS_ADL) || defined(__GNUC__) using namespace std;#elif defined(BOOST_NO_STDC_NAMESPACE) using ::abs; using ::sin; using ::sqrt;#else /* BOOST_NO_STDC_NAMESPACE */ using ::std::abs; using ::std::sin; using ::std::sqrt;#endif /* BOOST_NO_STDC_NAMESPACE */ using ::std::numeric_limits; static T const taylor_0_bound = numeric_limits<T>::epsilon(); static T const taylor_2_bound = sqrt(taylor_0_bound); static T const taylor_n_bound = sqrt(taylor_2_bound); if (abs(x) >= taylor_n_bound) { return(sin(x)/x); } else { // approximation by taylor series in x at 0 up to order 0#ifdef __MWERKS__ U<T> result = static_cast<U<T> >(1);#else U<T> result = U<T>(1);#endif if (abs(x) >= taylor_0_bound) { U<T> x2 = x*x; // approximation by taylor series in x at 0 up to order 2 result -= x2/static_cast<T>(6); if (abs(x) >= taylor_2_bound) { // approximation by taylor series in x at 0 up to order 4 result += (x2*x2)/static_cast<T>(120); } } return(result); } }#endif /* BOOST_NO_TEMPLATE_TEMPLATES */ }}#endif /* BOOST_SINC_HPP */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -