⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 asinh.hpp

📁 CGAL is a collaborative effort of several sites in Europe and Israel. The goal is to make the most i
💻 HPP
字号:
//    boost asinh.hpp header file//  (C) Copyright Eric Ford & Hubert Holin 2001.//  Distributed under the Boost Software License, Version 1.0. (See//  accompanying file LICENSE_1_0.txt or copy at//  http://www.boost.org/LICENSE_1_0.txt)// See http://www.boost.org for updates, documentation, and revision history.#ifndef BOOST_ASINH_HPP#define BOOST_ASINH_HPP#include <cmath>#include <limits>#include <string>#include <stdexcept>#include <boost/config.hpp>// This is the inverse of the hyperbolic sine function.namespace boost{    namespace math    {#if defined(__GNUC__) && (__GNUC__ < 3)        // gcc 2.x ignores function scope using declarations,        // put them in the scope of the enclosing namespace instead:                using    ::std::abs;        using    ::std::sqrt;        using    ::std::log;                using    ::std::numeric_limits;#endif                template<typename T>        inline T    asinh(const T x)        {            using    ::std::abs;            using    ::std::sqrt;            using    ::std::log;                        using    ::std::numeric_limits;                                    T const            one = static_cast<T>(1);            T const            two = static_cast<T>(2);                        static T const    taylor_2_bound = sqrt(numeric_limits<T>::epsilon());            static T const    taylor_n_bound = sqrt(taylor_2_bound);            static T const    upper_taylor_2_bound = one/taylor_2_bound;            static T const    upper_taylor_n_bound = one/taylor_n_bound;                        if        (x >= +taylor_n_bound)            {                if        (x > upper_taylor_n_bound)                {                    if        (x > upper_taylor_2_bound)                    {                        // approximation by laurent series in 1/x at 0+ order from -1 to 0                        return( log( x * two) );                    }                    else                    {                        // approximation by laurent series in 1/x at 0+ order from -1 to 1                        return( log( x*two + (one/(x*two)) ) );                    }                }                else                {                    return( log( x + sqrt(x*x+one) ) );                }            }            else if    (x <= -taylor_n_bound)            {                return(-asinh(-x));            }            else            {                // approximation by taylor series in x at 0 up to order 2                T    result = x;                                if    (abs(x) >= taylor_2_bound)                {                    T    x3 = x*x*x;                                        // approximation by taylor series in x at 0 up to order 4                    result -= x3/static_cast<T>(6);                }                                return(result);            }        }    }}#endif /* BOOST_ASINH_HPP */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -