📄 asinh.hpp
字号:
// boost asinh.hpp header file// (C) Copyright Eric Ford & Hubert Holin 2001.// Distributed under the Boost Software License, Version 1.0. (See// accompanying file LICENSE_1_0.txt or copy at// http://www.boost.org/LICENSE_1_0.txt)// See http://www.boost.org for updates, documentation, and revision history.#ifndef BOOST_ASINH_HPP#define BOOST_ASINH_HPP#include <cmath>#include <limits>#include <string>#include <stdexcept>#include <boost/config.hpp>// This is the inverse of the hyperbolic sine function.namespace boost{ namespace math {#if defined(__GNUC__) && (__GNUC__ < 3) // gcc 2.x ignores function scope using declarations, // put them in the scope of the enclosing namespace instead: using ::std::abs; using ::std::sqrt; using ::std::log; using ::std::numeric_limits;#endif template<typename T> inline T asinh(const T x) { using ::std::abs; using ::std::sqrt; using ::std::log; using ::std::numeric_limits; T const one = static_cast<T>(1); T const two = static_cast<T>(2); static T const taylor_2_bound = sqrt(numeric_limits<T>::epsilon()); static T const taylor_n_bound = sqrt(taylor_2_bound); static T const upper_taylor_2_bound = one/taylor_2_bound; static T const upper_taylor_n_bound = one/taylor_n_bound; if (x >= +taylor_n_bound) { if (x > upper_taylor_n_bound) { if (x > upper_taylor_2_bound) { // approximation by laurent series in 1/x at 0+ order from -1 to 0 return( log( x * two) ); } else { // approximation by laurent series in 1/x at 0+ order from -1 to 1 return( log( x*two + (one/(x*two)) ) ); } } else { return( log( x + sqrt(x*x+one) ) ); } } else if (x <= -taylor_n_bound) { return(-asinh(-x)); } else { // approximation by taylor series in x at 0 up to order 2 T result = x; if (abs(x) >= taylor_2_bound) { T x3 = x*x*x; // approximation by taylor series in x at 0 up to order 4 result -= x3/static_cast<T>(6); } return(result); } } }}#endif /* BOOST_ASINH_HPP */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -