📄 atanh.hpp
字号:
// boost atanh.hpp header file// (C) Copyright Hubert Holin 2001.// Distributed under the Boost Software License, Version 1.0. (See// accompanying file LICENSE_1_0.txt or copy at// http://www.boost.org/LICENSE_1_0.txt)// See http://www.boost.org for updates, documentation, and revision history.#ifndef BOOST_ATANH_HPP#define BOOST_ATANH_HPP#include <cmath>#include <limits>#include <string>#include <stdexcept>#include <boost/config.hpp>// This is the inverse of the hyperbolic tangent function.namespace boost{ namespace math {#if defined(__GNUC__) && (__GNUC__ < 3) // gcc 2.x ignores function scope using declarations, // put them in the scope of the enclosing namespace instead: using ::std::abs; using ::std::sqrt; using ::std::log; using ::std::numeric_limits;#endif #if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) // This is the main fare template<typename T> inline T atanh(const T x) { using ::std::abs; using ::std::sqrt; using ::std::log; using ::std::numeric_limits; T const one = static_cast<T>(1); T const two = static_cast<T>(2); static T const taylor_2_bound = sqrt(numeric_limits<T>::epsilon()); static T const taylor_n_bound = sqrt(taylor_2_bound); if (x < -one) { if (numeric_limits<T>::has_quiet_NaN) { return(numeric_limits<T>::quiet_NaN()); } else { ::std::string error_reporting("Argument to atanh is strictly greater than +1 or strictly smaller than -1!"); ::std::domain_error bad_argument(error_reporting); throw(bad_argument); } } else if (x < -one+numeric_limits<T>::epsilon()) { if (numeric_limits<T>::has_infinity) { return(-numeric_limits<T>::infinity()); } else { ::std::string error_reporting("Argument to atanh is -1 (result: -Infinity)!"); ::std::out_of_range bad_argument(error_reporting); throw(bad_argument); } } else if (x > +one-numeric_limits<T>::epsilon()) { if (numeric_limits<T>::has_infinity) { return(+numeric_limits<T>::infinity()); } else { ::std::string error_reporting("Argument to atanh is +1 (result: +Infinity)!"); ::std::out_of_range bad_argument(error_reporting); throw(bad_argument); } } else if (x > +one) { if (numeric_limits<T>::has_quiet_NaN) { return(numeric_limits<T>::quiet_NaN()); } else { ::std::string error_reporting("Argument to atanh is strictly greater than +1 or strictly smaller than -1!"); ::std::domain_error bad_argument(error_reporting); throw(bad_argument); } } else if (abs(x) >= taylor_n_bound) { return(log( (one + x) / (one - x) ) / two); } else { // approximation by taylor series in x at 0 up to order 2 T result = x; if (abs(x) >= taylor_2_bound) { T x3 = x*x*x; // approximation by taylor series in x at 0 up to order 4 result += x3/static_cast<T>(3); } return(result); } }#else // These are implementation details (for main fare see below) namespace detail { template < typename T, bool InfinitySupported > struct atanh_helper1_t { static T get_pos_infinity() { return(+::std::numeric_limits<T>::infinity()); } static T get_neg_infinity() { return(-::std::numeric_limits<T>::infinity()); } }; // boost::math::detail::atanh_helper1_t template<typename T> struct atanh_helper1_t<T, false> { static T get_pos_infinity() { ::std::string error_reporting("Argument to atanh is +1 (result: +Infinity)!"); ::std::out_of_range bad_argument(error_reporting); throw(bad_argument); } static T get_neg_infinity() { ::std::string error_reporting("Argument to atanh is -1 (result: -Infinity)!"); ::std::out_of_range bad_argument(error_reporting); throw(bad_argument); } }; // boost::math::detail::atanh_helper1_t template < typename T, bool QuietNanSupported > struct atanh_helper2_t { static T get_NaN() { return(::std::numeric_limits<T>::quiet_NaN()); } }; // boost::detail::atanh_helper2_t template<typename T> struct atanh_helper2_t<T, false> { static T get_NaN() { ::std::string error_reporting("Argument to atanh is strictly greater than +1 or strictly smaller than -1!"); ::std::domain_error bad_argument(error_reporting); throw(bad_argument); } }; // boost::detail::atanh_helper2_t } // boost::detail // This is the main fare template<typename T> inline T atanh(const T x) { using ::std::abs; using ::std::sqrt; using ::std::log; using ::std::numeric_limits; typedef detail::atanh_helper1_t<T, ::std::numeric_limits<T>::has_infinity> helper1_type; typedef detail::atanh_helper2_t<T, ::std::numeric_limits<T>::has_quiet_NaN> helper2_type; T const one = static_cast<T>(1); T const two = static_cast<T>(2); static T const taylor_2_bound = sqrt(numeric_limits<T>::epsilon()); static T const taylor_n_bound = sqrt(taylor_2_bound); if (x < -one) { return(helper2_type::get_NaN()); } else if (x < -one+numeric_limits<T>::epsilon()) { return(helper1_type::get_neg_infinity()); } else if (x > +one-numeric_limits<T>::epsilon()) { return(helper1_type::get_pos_infinity()); } else if (x > +one) { return(helper2_type::get_NaN()); } else if (abs(x) >= taylor_n_bound) { return(log( (one + x) / (one - x) ) / two); } else { // approximation by taylor series in x at 0 up to order 2 T result = x; if (abs(x) >= taylor_2_bound) { T x3 = x*x*x; // approximation by taylor series in x at 0 up to order 4 result += x3/static_cast<T>(3); } return(result); } }#endif /* defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) */ }}#endif /* BOOST_ATANH_HPP */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -