⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 atanh.hpp

📁 CGAL is a collaborative effort of several sites in Europe and Israel. The goal is to make the most i
💻 HPP
字号:
//    boost atanh.hpp header file//  (C) Copyright Hubert Holin 2001.//  Distributed under the Boost Software License, Version 1.0. (See//  accompanying file LICENSE_1_0.txt or copy at//  http://www.boost.org/LICENSE_1_0.txt)// See http://www.boost.org for updates, documentation, and revision history.#ifndef BOOST_ATANH_HPP#define BOOST_ATANH_HPP#include <cmath>#include <limits>#include <string>#include <stdexcept>#include <boost/config.hpp>// This is the inverse of the hyperbolic tangent function.namespace boost{    namespace math    {#if defined(__GNUC__) && (__GNUC__ < 3)        // gcc 2.x ignores function scope using declarations,        // put them in the scope of the enclosing namespace instead:                using    ::std::abs;        using    ::std::sqrt;        using    ::std::log;                using    ::std::numeric_limits;#endif        #if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)        // This is the main fare                template<typename T>        inline T    atanh(const T x)        {            using    ::std::abs;            using    ::std::sqrt;            using    ::std::log;                        using    ::std::numeric_limits;                        T const            one = static_cast<T>(1);            T const            two = static_cast<T>(2);                        static T const    taylor_2_bound = sqrt(numeric_limits<T>::epsilon());            static T const    taylor_n_bound = sqrt(taylor_2_bound);                        if        (x < -one)            {                if    (numeric_limits<T>::has_quiet_NaN)                {                    return(numeric_limits<T>::quiet_NaN());                }                else                {                    ::std::string        error_reporting("Argument to atanh is strictly greater than +1 or strictly smaller than -1!");                    ::std::domain_error  bad_argument(error_reporting);                                        throw(bad_argument);                }            }            else if    (x < -one+numeric_limits<T>::epsilon())            {                if    (numeric_limits<T>::has_infinity)                {                    return(-numeric_limits<T>::infinity());                }                else                {                    ::std::string        error_reporting("Argument to atanh is -1 (result: -Infinity)!");                    ::std::out_of_range  bad_argument(error_reporting);                                        throw(bad_argument);                }            }            else if    (x > +one-numeric_limits<T>::epsilon())            {                if    (numeric_limits<T>::has_infinity)                {                    return(+numeric_limits<T>::infinity());                }                else                {                    ::std::string        error_reporting("Argument to atanh is +1 (result: +Infinity)!");                    ::std::out_of_range  bad_argument(error_reporting);                                        throw(bad_argument);                }            }            else if    (x > +one)            {                if    (numeric_limits<T>::has_quiet_NaN)                {                    return(numeric_limits<T>::quiet_NaN());                }                else                {                    ::std::string        error_reporting("Argument to atanh is strictly greater than +1 or strictly smaller than -1!");                    ::std::domain_error  bad_argument(error_reporting);                                        throw(bad_argument);                }            }            else if    (abs(x) >= taylor_n_bound)            {                return(log( (one + x) / (one - x) ) / two);            }            else            {                // approximation by taylor series in x at 0 up to order 2                T    result = x;                                if    (abs(x) >= taylor_2_bound)                {                    T    x3 = x*x*x;                                        // approximation by taylor series in x at 0 up to order 4                    result += x3/static_cast<T>(3);                }                                return(result);            }        }#else        // These are implementation details (for main fare see below)                namespace detail        {            template    <                            typename T,                            bool InfinitySupported                        >            struct    atanh_helper1_t            {                static T    get_pos_infinity()                {                    return(+::std::numeric_limits<T>::infinity());                }                                static T    get_neg_infinity()                {                    return(-::std::numeric_limits<T>::infinity());                }            };    // boost::math::detail::atanh_helper1_t                                    template<typename T>            struct    atanh_helper1_t<T, false>            {                static T    get_pos_infinity()                {                    ::std::string        error_reporting("Argument to atanh is +1 (result: +Infinity)!");                    ::std::out_of_range  bad_argument(error_reporting);                                        throw(bad_argument);                }                                static T    get_neg_infinity()                {                    ::std::string        error_reporting("Argument to atanh is -1 (result: -Infinity)!");                    ::std::out_of_range  bad_argument(error_reporting);                                        throw(bad_argument);                }            };    // boost::math::detail::atanh_helper1_t                                    template    <                            typename T,                            bool QuietNanSupported                        >            struct    atanh_helper2_t            {                static T    get_NaN()                {                    return(::std::numeric_limits<T>::quiet_NaN());                }            };    // boost::detail::atanh_helper2_t                                    template<typename T>            struct    atanh_helper2_t<T, false>            {                static T    get_NaN()                {                    ::std::string        error_reporting("Argument to atanh is strictly greater than +1 or strictly smaller than -1!");                    ::std::domain_error  bad_argument(error_reporting);                                        throw(bad_argument);                }            };    // boost::detail::atanh_helper2_t        }    // boost::detail                        // This is the main fare                template<typename T>        inline T    atanh(const T x)        {            using    ::std::abs;            using    ::std::sqrt;            using    ::std::log;                        using    ::std::numeric_limits;                        typedef  detail::atanh_helper1_t<T, ::std::numeric_limits<T>::has_infinity>    helper1_type;            typedef  detail::atanh_helper2_t<T, ::std::numeric_limits<T>::has_quiet_NaN>    helper2_type;                                    T const           one = static_cast<T>(1);            T const           two = static_cast<T>(2);                        static T const    taylor_2_bound = sqrt(numeric_limits<T>::epsilon());            static T const    taylor_n_bound = sqrt(taylor_2_bound);                        if        (x < -one)            {                return(helper2_type::get_NaN());            }            else if    (x < -one+numeric_limits<T>::epsilon())            {                return(helper1_type::get_neg_infinity());            }            else if    (x > +one-numeric_limits<T>::epsilon())            {                return(helper1_type::get_pos_infinity());            }            else if    (x > +one)            {                return(helper2_type::get_NaN());            }            else if    (abs(x) >= taylor_n_bound)            {                return(log( (one + x) / (one - x) ) / two);            }            else            {                // approximation by taylor series in x at 0 up to order 2                T    result = x;                                if    (abs(x) >= taylor_2_bound)                {                    T    x3 = x*x*x;                                        // approximation by taylor series in x at 0 up to order 4                    result += x3/static_cast<T>(3);                }                                return(result);            }        }#endif /* defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) */    }}#endif /* BOOST_ATANH_HPP */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -