📄 closures.hpp
字号:
/*============================================================================= Adaptable closures Phoenix V0.9 Copyright (c) 2001-2002 Joel de Guzman Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) URL: http://spirit.sourceforge.net/==============================================================================*/#ifndef PHOENIX_CLOSURES_HPP#define PHOENIX_CLOSURES_HPP///////////////////////////////////////////////////////////////////////////////#include "boost/lambda/core.hpp"///////////////////////////////////////////////////////////////////////////////namespace boost {namespace lambda {/////////////////////////////////////////////////////////////////////////////////// Adaptable closures//// The framework will not be complete without some form of closures// support. Closures encapsulate a stack frame where local// variables are created upon entering a function and destructed// upon exiting. Closures provide an environment for local// variables to reside. Closures can hold heterogeneous types.//// Phoenix closures are true hardware stack based closures. At the// very least, closures enable true reentrancy in lambda functions.// A closure provides access to a function stack frame where local// variables reside. Modeled after Pascal nested stack frames,// closures can be nested just like nested functions where code in// inner closures may access local variables from in-scope outer// closures (accessing inner scopes from outer scopes is an error// and will cause a run-time assertion failure).//// There are three (3) interacting classes://// 1) closure://// At the point of declaration, a closure does not yet create a// stack frame nor instantiate any variables. A closure declaration// declares the types and names[note] of the local variables. The// closure class is meant to be subclassed. It is the// responsibility of a closure subclass to supply the names for// each of the local variable in the closure. Example://// struct my_closure : closure<int, string, double> {//// member1 num; // names the 1st (int) local variable// member2 message; // names the 2nd (string) local variable// member3 real; // names the 3rd (double) local variable// };//// my_closure clos;//// Now that we have a closure 'clos', its local variables can be// accessed lazily using the dot notation. Each qualified local// variable can be used just like any primitive actor (see// primitives.hpp). Examples://// clos.num = 30// clos.message = arg1// clos.real = clos.num * 1e6//// The examples above are lazily evaluated. As usual, these// expressions return composite actors that will be evaluated// through a second function call invocation (see operators.hpp).// Each of the members (clos.xxx) is an actor. As such, applying// the operator() will reveal its identity://// clos.num() // will return the current value of clos.num//// *** [note] Acknowledgement: Juan Carlos Arevalo-Baeza (JCAB)// introduced and initilally implemented the closure member names// that uses the dot notation.//// 2) closure_member//// The named local variables of closure 'clos' above are actually// closure members. The closure_member class is an actor and// conforms to its conceptual interface. member1..memberN are// predefined typedefs that correspond to each of the listed types// in the closure template parameters.//// 3) closure_frame//// When a closure member is finally evaluated, it should refer to// an actual instance of the variable in the hardware stack.// Without doing so, the process is not complete and the evaluated// member will result to an assertion failure. Remember that the// closure is just a declaration. The local variables that a// closure refers to must still be instantiated.//// The closure_frame class does the actual instantiation of the// local variables and links these variables with the closure and// all its members. There can be multiple instances of// closure_frames typically situated in the stack inside a// function. Each closure_frame instance initiates a stack frame// with a new set of closure local variables. Example://// void foo()// {// closure_frame<my_closure> frame(clos);// /* do something */// }//// where 'clos' is an instance of our closure 'my_closure' above.// Take note that the usage above precludes locally declared// classes. If my_closure is a locally declared type, we can still// use its self_type as a paramater to closure_frame://// closure_frame<my_closure::self_type> frame(clos);//// Upon instantiation, the closure_frame links the local variables// to the closure. The previous link to another closure_frame// instance created before is saved. Upon destruction, the// closure_frame unlinks itself from the closure and relinks the// preceding closure_frame prior to this instance.//// The local variables in the closure 'clos' above is default// constructed in the stack inside function 'foo'. Once 'foo' is// exited, all of these local variables are destructed. In some// cases, default construction is not desirable and we need to// initialize the local closure variables with some values. This// can be done by passing in the initializers in a compatible// tuple. A compatible tuple is one with the same number of// elements as the destination and where each element from the// destination can be constructed from each corresponding element// in the source. Example://// tuple<int, char const*, int> init(123, "Hello", 1000);// closure_frame<my_closure> frame(clos, init);//// Here now, our closure_frame's variables are initialized with// int: 123, char const*: "Hello" and int: 1000.//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// closure_frame class/////////////////////////////////////////////////////////////////////////////////template <typename ClosureT>class closure_frame : public ClosureT::tuple_t {public: closure_frame(ClosureT& clos) : ClosureT::tuple_t(), save(clos.frame), frame(clos.frame) { clos.frame = this; } template <typename TupleT> closure_frame(ClosureT& clos, TupleT const& init) : ClosureT::tuple_t(init), save(clos.frame), frame(clos.frame) { clos.frame = this; } ~closure_frame() { frame = save; }private: closure_frame(closure_frame const&); // no copy closure_frame& operator=(closure_frame const&); // no assign closure_frame* save; closure_frame*& frame;};/////////////////////////////////////////////////////////////////////////////////// closure_member class/////////////////////////////////////////////////////////////////////////////////template <int N, typename ClosureT>class closure_member {public: typedef typename ClosureT::tuple_t tuple_t; closure_member() : frame(ClosureT::closure_frame_ref()) {} template <typename TupleT> struct sig { typedef typename detail::tuple_element_as_reference< N, typename ClosureT::tuple_t >::type type; }; template <class Ret, class A, class B, class C> // typename detail::tuple_element_as_reference // <N, typename ClosureT::tuple_t>::type Ret call(A&, B&, C&) const { assert(frame); return boost::tuples::get<N>(*frame); }private: typename ClosureT::closure_frame_t*& frame;};/////////////////////////////////////////////////////////////////////////////////// closure class/////////////////////////////////////////////////////////////////////////////////template < typename T0 = null_type, typename T1 = null_type, typename T2 = null_type, typename T3 = null_type, typename T4 = null_type>class closure {public: typedef tuple<T0, T1, T2, T3, T4> tuple_t; typedef closure<T0, T1, T2, T3, T4> self_t; typedef closure_frame<self_t> closure_frame_t; closure() : frame(0) { closure_frame_ref(&frame); } closure_frame_t& context() { assert(frame); return frame; } closure_frame_t const& context() const { assert(frame); return frame; } typedef lambda_functor<closure_member<0, self_t> > member1; typedef lambda_functor<closure_member<1, self_t> > member2; typedef lambda_functor<closure_member<2, self_t> > member3; typedef lambda_functor<closure_member<3, self_t> > member4; typedef lambda_functor<closure_member<4, self_t> > member5;private: closure(closure const&); // no copy closure& operator=(closure const&); // no assign template <int N, typename ClosureT> friend struct closure_member; template <typename ClosureT> friend class closure_frame; static closure_frame_t*& closure_frame_ref(closure_frame_t** frame_ = 0) { static closure_frame_t** frame = 0; if (frame_ != 0) frame = frame_; return *frame; } closure_frame_t* frame;};}} // namespace #endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -