⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bc_clustering.hpp

📁 CGAL is a collaborative effort of several sites in Europe and Israel. The goal is to make the most i
💻 HPP
字号:
// Copyright 2004 The Trustees of Indiana University.// Use, modification and distribution is subject to the Boost Software// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at// http://www.boost.org/LICENSE_1_0.txt)//  Authors: Douglas Gregor//           Andrew Lumsdaine#ifndef BOOST_GRAPH_BETWEENNESS_CENTRALITY_CLUSTERING_HPP#define BOOST_GRAPH_BETWEENNESS_CENTRALITY_CLUSTERING_HPP#include <boost/graph/betweenness_centrality.hpp>#include <boost/graph/graph_traits.hpp>#include <boost/pending/indirect_cmp.hpp>#include <algorithm>#include <vector>#include <boost/property_map.hpp>namespace boost {/** Threshold termination function for the betweenness centrality * clustering algorithm. */template<typename T>struct bc_clustering_threshold{  typedef T centrality_type;  /// Terminate clustering when maximum absolute edge centrality is  /// below the given threshold.  explicit bc_clustering_threshold(T threshold)     : threshold(threshold), dividend(1.0) {}    /**   * Terminate clustering when the maximum edge centrality is below   * the given threshold.   *   * @param threshold the threshold value   *   * @param g the graph on which the threshold will be calculated   *   * @param normalize when true, the threshold is compared against the   * normalized edge centrality based on the input graph; otherwise,   * the threshold is compared against the absolute edge centrality.   */  template<typename Graph>  bc_clustering_threshold(T threshold, const Graph& g, bool normalize = true)    : threshold(threshold), dividend(1.0)  {    if (normalize) {      typename graph_traits<Graph>::vertices_size_type n = num_vertices(g);      dividend = T((n - 1) * (n - 2)) / T(2);    }  }  /** Returns true when the given maximum edge centrality (potentially   * normalized) falls below the threshold.   */  template<typename Graph, typename Edge>  bool operator()(T max_centrality, Edge, const Graph&)  {    return (max_centrality / dividend) < threshold;  } protected:  T threshold;  T dividend;};/** Graph clustering based on edge betweenness centrality. *  * This algorithm implements graph clustering based on edge * betweenness centrality. It is an iterative algorithm, where in each * step it compute the edge betweenness centrality (via @ref * brandes_betweenness_centrality) and removes the edge with the * maximum betweenness centrality. The @p done function object * determines when the algorithm terminates (the edge found when the * algorithm terminates will not be removed). * * @param g The graph on which clustering will be performed. The type * of this parameter (@c MutableGraph) must be a model of the * VertexListGraph, IncidenceGraph, EdgeListGraph, and Mutable Graph * concepts. * * @param done The function object that indicates termination of the * algorithm. It must be a ternary function object thats accepts the * maximum centrality, the descriptor of the edge that will be * removed, and the graph @p g. * * @param edge_centrality (UTIL/OUT) The property map that will store * the betweenness centrality for each edge. When the algorithm * terminates, it will contain the edge centralities for the * graph. The type of this property map must model the * ReadWritePropertyMap concept. Defaults to an @c * iterator_property_map whose value type is  * @c Done::centrality_type and using @c get(edge_index, g) for the  * index map. * * @param vertex_index (IN) The property map that maps vertices to * indices in the range @c [0, num_vertices(g)). This type of this * property map must model the ReadablePropertyMap concept and its * value type must be an integral type. Defaults to  * @c get(vertex_index, g). */template<typename MutableGraph, typename Done, typename EdgeCentralityMap,         typename VertexIndexMap>void betweenness_centrality_clustering(MutableGraph& g, Done done,                                  EdgeCentralityMap edge_centrality,                                  VertexIndexMap vertex_index){  typedef typename property_traits<EdgeCentralityMap>::value_type    centrality_type;  typedef typename graph_traits<MutableGraph>::edge_iterator edge_iterator;  typedef typename graph_traits<MutableGraph>::edge_descriptor edge_descriptor;  typedef typename graph_traits<MutableGraph>::vertices_size_type    vertices_size_type;  if (edges(g).first == edges(g).second) return;  // Function object that compares the centrality of edges  indirect_cmp<EdgeCentralityMap, std::less<centrality_type> >     cmp(edge_centrality);  bool is_done;  do {    brandes_betweenness_centrality(g,                                    edge_centrality_map(edge_centrality)                                   .vertex_index_map(vertex_index));    edge_descriptor e = *max_element(edges(g).first, edges(g).second, cmp);    centrality_type max_centrality = get(edge_centrality, e);    is_done = done(get(edge_centrality, e), e, g);    if (!is_done) remove_edge(e, g);  } while (!is_done && edges(g).first != edges(g).second);}/** * \overload */ template<typename MutableGraph, typename Done, typename EdgeCentralityMap>void betweenness_centrality_clustering(MutableGraph& g, Done done,                                  EdgeCentralityMap edge_centrality){  betweenness_centrality_clustering(g, done, edge_centrality,                                    get(vertex_index, g));}/** * \overload */ template<typename MutableGraph, typename Done>voidbetweenness_centrality_clustering(MutableGraph& g, Done done){  typedef typename Done::centrality_type centrality_type;  std::vector<centrality_type> edge_centrality(num_edges(g));  betweenness_centrality_clustering(g, done,     make_iterator_property_map(edge_centrality.begin(), get(edge_index, g)),    get(vertex_index, g));}} // end namespace boost#endif // BOOST_GRAPH_BETWEENNESS_CENTRALITY_CLUSTERING_HPP

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -