📄 perturbation_bootstrap.java
字号:
package fasbir.ensemblers;
import weka.classifiers.*;
import weka.core.*;
import java.util.Random;
/**
* <p>Description: Bootstrap sampling perturbation method</p>
* A perturbation method which samples the training dataset. This method is more familiar as Bagging.
* @author Y. Yu (yuy@lamda.nju.edu.cn), LAMDA Group (http://lamda.nju.edu.cn/)
* @version 1.0
*/
public class Perturbation_Bootstrap extends PerturbationEncapsulation{
/**
* Generates a classifier given perturbed training dataset.
*
* @param data set of instances serving as training data
* @throws Exception if the classifier has not been generated successfully
* @todo Implement this weka.classifiers.Classifier method
*/
public void buildClassifier(Instances dataset) throws Exception {
Random rnd = new Random(m_Seed);
Instances perturbedDataset = sampleDataset(rnd, dataset);
m_Classifier.buildClassifier( perturbedDataset );
}
/**
* sample data with replacement
* @param rnd Random
* @param data Instances data set
* @return Instances sampled data set
*/
protected Instances sampleDataset(Random rnd, Instances data) {
int num_newdata = data.numInstances();
int num_data = data.numInstances();
Instances newdata = new Instances(data, num_newdata);
for (int i = 0; i < num_newdata; i++) {
Instance newins = new Instance(data.instance(rnd.nextInt(num_data)));
newdata.add(newins);
}
return newdata;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -