📄 perturbation_subspace.java
字号:
package fasbir.ensemblers;
import weka.classifiers.*;
import weka.core.*;
import java.util.Random;
import weka.filters.unsupervised.attribute.*;
import weka.filters.Filter;
/**
* <p>Description: Random subspace perturbation method</p>
* A perturbation method which project the original training dataset to a randomly selected attribute subspace.
* @author Y. Yu (yuy@lamda.nju.edu.cn), LAMDA Group (http://lamda.nju.edu.cn/)
* @version 1.0
*/
public class Perturbation_Subspace extends PerturbationEncapsulation{
protected double m_SubspaceRatio = 1;
protected Remove m_removeFilter;
/**
* set ratio of subspace
* @param ratio double
*/
public void setSubspaceRatio( double ratio ){
this.m_SubspaceRatio = ratio;
}
/**
* Generates a classifier given perturbed training dataset.
*
* @param data set of instances serving as training data
* @throws Exception if the classifier has not been generated successfully
* @todo Implement this weka.classifiers.Classifier method
*/
public void buildClassifier(Instances dataset) throws Exception {
Random rnd = new Random(m_Seed);
Instances perturbedDataset = projectDataset(rnd, dataset);
m_Classifier.buildClassifier(perturbedDataset);
}
protected Instances projectDataset(Random rnd, Instances dataset) throws Exception{
int numAttributes = dataset.numAttributes() - 1; //do not includes class attribute
int numSelectAtt = (int)Math.round(numAttributes * (1 - m_SubspaceRatio) ); // select to remove
boolean[] isSelected = new boolean[numAttributes];
int[] removeAttr = new int[numSelectAtt];
for(int i=0; i<numSelectAtt; i++){
int remove = rnd.nextInt(numAttributes-i);
for(int j=0; j<=remove; j++)
if( isSelected[j] ) remove++;
isSelected[ removeAttr[i] = remove ] = true;
}
m_removeFilter = new Remove();
m_removeFilter.setInvertSelection(false);
m_removeFilter.setAttributeIndicesArray(removeAttr);
m_removeFilter.setInputFormat(dataset);
Instances newdataset = Filter.useFilter(dataset, m_removeFilter);
newdataset.setClassIndex( newdataset.numAttributes() - 1 );
return newdataset;
}
/**
* classify a given instance
* @param instance Instance
* @return double
* @throws Exception
*/
public double classifyInstance(Instance instance) throws Exception {
this.m_removeFilter.input(instance);
Instance pinstance = this.m_removeFilter.output();
return m_Classifier.classifyInstance(pinstance);
}
/**
* class distribution is the same of base classifier's
* @param instance Instance
* @return double[]
* @throws Exception
*/
public double[] distributionForInstance(Instance instance) throws Exception {
this.m_removeFilter.input(instance);
Instance pinstance = this.m_removeFilter.output();
return m_Classifier.distributionForInstance(pinstance);
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -