📄 manual.tex
字号:
\documentclass[twoside]{article}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{apalike}
\usepackage{graphicx}
\def\stackbot#1#2{\mathrel{\mathop{#1}\limits_{#2}}}
\renewcommand{\vec}[1]{\mbox{\boldmath ${#1}$}}
\newcommand{\Matrix}[1]{\mbox{\boldmath ${#1}$}}
\begin{document}
\title{\textbf{An Object-Oriented Support Vector Machine Toolbox for Matlab}}
\author
{
Gavin C. Cawley
\thanks{
G. C. Cawley is with the School of Information Systems, University of East
Anglia, Norwich, Norfolk, U.K. \mbox{NR4 7TJ}. E-mail:
\texttt{gcc@sys.uea.ac.uk} .}
}
\maketitle
\begin{abstract}
\end{abstract}
\section{Introduction}
\subsection{Support Vector Classification}
\label{sec:svm}
The support vector machine \cite{Boser1992,Cortes1995}, given labelled
training data
%
\begin{displaymath}
\mathcal{D} = \left\{ (\vec{x}_i, y_i) \right\}_{i = 1}^{\ell}, \quad \vec{x}_i \in \vec{X} \subset {\mathbb R}^d, \quad y_i \in \vec{Y} = \{-1, +1\},
\end{displaymath}
%
constructs a maximal margin linear classifier in a high dimensional feature
space, $\Phi(\vec{x})$, defined by a positive definite kernel function,
$k(\vec{x},\vec{x}')$, specifying an inner product in the feature space,
%
\begin{displaymath}
\Phi(\vec{x}).\Phi(\vec{x}') = k(\vec{x}, \vec{x}').
\end{displaymath}
%
A common kernel is the Gaussian radial basis function (RBF),
%
\begin{displaymath}
k(\vec{x}, \vec{x}') = e^{-||\vec{x} - \vec{x}'||^2/2\sigma^2}.
\end{displaymath}
%
The function implemented by a support vector machine is given by
%
\begin{equation}
f(\vec{x}) = \left\{ \sum_{i=1}^{\ell}\alpha_iy_ik(\vec{x}_i,\vec{x}) \right\} - b.
\label{eqn:expansion}
\end{equation}
%
To find the optimal coefficients, $\vec{\alpha}$, of this expansion it is
sufficient to maximise the functional,
%
\begin{equation}
W(\vec{\alpha}) = \sum_{i=1}^{\ell}\alpha_i - \frac{1}{2}\sum_{i,j=1}^{\ell}y_iy_j\alpha_i\alpha_jk(\vec{x}_i, \vec{x}_j),
\label{eqn:objective}
\end{equation}
%
in the non-negative quadrant,
%
\begin{equation}
0 \leq \alpha_i \leq C, \qquad i = 1, \ldots, \ell,
\label{eqn:non_negatvity_constraint}
\end{equation}
%
subject to the constraint,
%
\begin{equation}
\sum_{i=1}^{\ell}\alpha_iy_i = 0.
\label{eqn:linear_equality_constraint}
\end{equation}
%
$C$ is a regularisation parameter, controlling a compromise between maximising
the margin and minimising the number of training set errors. The
Karush-Kuhn-Tucker (KKT) conditions can be stated as follows:
%
\begin{eqnarray}
\alpha_i = 0 & \implies & y_if(\vec{x}_i) \geq 1,\\
0 < \alpha_i < C & \implies & y_if(\vec{x}_i) = 1, \label{eqn:kkt2} \\
\alpha_i = C & \implies & y_if(\vec{x}_i) \leq 1.
\end{eqnarray}
%
These conditions are satisfied for the set of feasible Lagrange multipliers,
$\vec{\alpha}^0 = \{\alpha_1^0, \alpha_2^0, \ldots, \alpha_\ell^0\}$,
maximising the objective function given by equation~\ref{eqn:objective}. The
bias parameter, $b$, is selected to ensure that the second KKT condition is
satisfied for all input patterns corresponding to non-bound Lagrange
multipliers. Note that in general only a limited number of Lagrange
multipliers, $\vec{\alpha}$, will have non-zero values; the corresponding
input patterns are known as support vectors. Let ${\cal I}$ be the set
of indices of patterns corresponding to non-bound Lagrange multipliers,
%
\begin{displaymath}
{\cal I} = \{i~:~0 < \alpha_i^0 < C \},
\end{displaymath}
%
and similarly, let ${\cal J}$ be the set of indices of patterns with Lagrange
multipliers at the upper bound $C$,
%
\begin{displaymath}
{\cal J} = \{i~:~\alpha_i^0 = C \}.
\end{displaymath}
%
Equation~\ref{eqn:expansion} can then be written as an expansion over support
vectors,
%
\begin{equation}
f(\vec{x}) = \left\{ \sum_{i \in \{{\cal I, J}\}}\alpha_i^0y_ik(\vec{x}_i,\vec{x}) \right\} - b.
\label{eqn:sv_expansion}
\end{equation}
%
For a full exposition of the support vector method, see the any of the
excellent books \cite{Vapnik1995,Vapnik1998,Cristianini2000} or tutorial
articles \cite{} available.
\section{Training Algorithms}
\label{sec:training_algorithms}
\section{Model Selection}
\label{sec:model_selection}
\section{Summary}
\label{sec:summary}
\section{Acknowledgements}
\bibliographystyle{apalike}
\bibliography{manual}
\end{document}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -