📄 pnorm.m
字号:
function [est, x, k] = pnorm(A, p, tol, prnt)
%PNORM Estimate of matrix p-norm (1 <= p <= inf).
% [EST, x, k] = PNORM(A, p, TOL) estimates the Holder p-norm of a
% matrix A, using the p-norm power method with a specially
% chosen starting vector.
% TOL is a relative convergence tolerance (default 1E-4).
% Returned are the norm estimate EST (which is a lower bound for the
% exact p-norm), the corresponding approximate maximizing vector x,
% and the number of power method iterations k.
% A nonzero fourth input argument causes trace output to the screen.
% If A is a vector, this routine simply returns NORM(A, p).
%
% See also NORM, NORMEST, NORMEST1.
% Note: The estimate is exact for p = 1, but is not always exact for
% p = 2 or p = inf. Code could be added to treat p = 2 and p = inf
% separately.
%
% Calls DUAL.
%
% Reference:
% N. J. Higham, Estimating the matrix p-norm, Numer. Math.,
% 62 (1992), pp. 539-555.
% N. J. Higham, Accuracy and Stability of Numerical Algorithms,
% Second edition, Society for Industrial and Applied Mathematics,
% Philadelphia, PA, 2002; sec. 15.2.
if nargin < 2, error('Must specify norm via second parameter.'), end
[m,n] = size(A);
if min(m,n) == 1, est = norm(A,p); return, end
if nargin < 4, prnt = 0; end
if nargin < 3 | isempty(tol), tol = 1e-4; end
% Stage I. Use Algorithm OSE to get starting vector x for power method.
% Form y = B*x, at each stage choosing x(k) = c and scaling previous
% x(k+1:n) by s, where norm([c s],p)=1.
sm = 9; % Number of samples.
y = zeros(m,1); x = zeros(n,1);
for k=1:n
if k == 1
c = 1; s = 0;
else
W = [A(:,k) y];
if p == 2 % Special case. Solve exactly for 2-norm.
[U,S,V] = svd(full(W));
c = V(1,1); s = V(2,1);
else
fopt = 0;
for th=linspace(0,pi,sm)
c1 = cos(th); s1 = sin(th);
nrm = norm([c1 s1],p);
c1 = c1/nrm; s1 = s1/nrm; % [c1 s1] has unit p-norm.
f = norm( W*[c1 s1]', p );
if f > fopt
fopt = f;
c = c1; s = s1;
end
end
end
end
x(k) = c;
y = x(k)*A(:,k) + s*y;
if k > 1, x(1:k-1) = s*x(1:k-1); end
end
est = norm(y,p);
if prnt, fprintf('Alg OSE: %9.4e\n', est), end
% Stage II. Apply Algorithm PM (the power method).
q = dual(p);
k = 1;
while 1
y = A*x;
est_old = est;
est = norm(y,p);
z = A' * dual(y,p);
if prnt
fprintf('%2.0f: norm(y) = %9.4e, norm(z) = %9.4e', ...
k, norm(y,p), norm(z,q))
fprintf(' rel_incr(est) = %9.4e\n', (est-est_old)/est)
end
if ( norm(z,q) <= z'*x | abs(est-est_old)/est <= tol ) & k > 1
return
end
x = dual(z,q);
k = k + 1;
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -