📄 trap2tri.m
字号:
function [Q, T] = trap2tri(L)
%TRAP2TRI Unitary reduction of trapezoidal matrix to triangular form.
% [Q, T] = TRAP2TRI(L), where L is an m-by-n lower trapezoidal
% matrix with m >= n, produces a unitary Q such that Q*L = [T; 0],
% where T is n-by-n and lower triangular.
% Q is a product of Householder transformations.
% Called by COD.
%
% Reference:
% G. H. Golub and C. F. Van Loan, Matrix Computations, third
% edition, Johns Hopkins University Press, Baltimore, Maryland,
% 1996; P5.2.5.
[n, r] = size(L);
if r > n | ~isequal(L,tril(L))
error('Matrix must be lower trapezoidal and m-by-n with m >= n.')
end
Q = eye(n); % To hold product of Householder transformations.
if r ~= n
% Reduce nxr L = r [L1] to lower triangular form: QL = [T].
% n-r [L2] [0]
for j=r:-1:1
% x is the vector to be reduced, which we overwrite with the H.T. vector.
x = L(j:n,j);
x(2:r-j+1) = zeros(r-j,1); % These elts of column left unchanged.
[v,beta,s] = gallery('house',x);
% Nothing to do if x is zero (or x=a*e_1, but we don't check for that).
if s ~= 0
% Implicitly apply H.T. to pivot column.
% L(r+1:n,j) = zeros(n-r,1); % We throw these elts away at the end.
L(j,j) = s;
% Apply H.T. to rest of matrix.
if j > 1
y = v'*L(j:n, 1:j-1);
L(j:n, 1:j-1) = L(j:n, 1:j-1) - beta*v*y;
end
% Update H.T. product.
y = v'*Q(j:n,:);
Q(j:n,:) = Q(j:n,:) - beta*v*y;
end
end
end
T = L(1:r,:); % Rows r+1:n have been zeroed out.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -