📄 gfpp.m
字号:
function A = gfpp(T, c)
%GFPP Matrix giving maximal growth factor for Gaussian elim. with pivoting.
% GFPP(T) is a matrix of order N for which Gaussian elimination
% with partial pivoting yields a growth factor 2^(N-1).
% T is an arbitrary nonsingular upper triangular matrix of order N-1.
% GFPP(T, C) sets all the multipliers to C (0 <= C <= 1)
% and gives growth factor (1+C)^(N-1) - but note that for T ~= EYE
% it is advisable to set C < 1, else rounding errors may cause
% computed growth factors smaller than expected.
% GFPP(N, C) (a special case) is the same as GFPP(EYE(N-1), C) and
% generates the well-known example of Wilkinson.
% Reference:
% N. J. Higham and D. J. Higham, Large growth factors in
% Gaussian elimination with pivoting, SIAM J. Matrix Analysis and
% Appl., 10 (1989), pp. 155-164.
% N. J. Higham, Accuracy and Stability of Numerical Algorithms,
% Second edition, Society for Industrial and Applied Mathematics,
% Philadelphia, PA, 2002; sec. 9.4.
if ~isequal(T,triu(T)) | any(~diag(T))
error('First argument must be a nonsingular upper triangular matrix.')
end
if nargin == 1, c = 1; end
if c < 0 | c > 1
error('Second parameter must be a scalar between 0 and 1 inclusive.')
end
m = length(T);
if m == 1 % Handle the special case T = scalar
n = T;
m = n-1;
T = eye(n-1);
else
n = m+1;
end
A = zeros(n);
L = eye(n) - c*tril(ones(n), -1);
A(:,1:n-1) = L*[T; zeros(1,n-1)];
theta = max(abs(A(:)));
A(:,n) = theta * ones(n,1);
A = A/theta;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -