📄 cholp.m
字号:
function [R, P, I] = cholp(A, piv)
%CHOLP Cholesky factorization with pivoting of a positive semidefinite matrix.
% [R, P] = CHOLP(A) returns an upper triangular matrix R and a
% permutation matrix P such that R'*R = P'*A*P. Only the upper
% triangular part of A is used. If A is not positive semidefinite,
% an error message is printed.
%
% [R, P, I] = CHOLP(A) never produces an error message.
% If A is positive semidefinite then I = 0 and R is the Cholesky factor.
% If A is not positive semidefinite then I is positive and
% R is (I-1)-by-N with P'*A*P - R'*R zero in columns 1:I-1 and
% rows 1:I-1.
% [R, I] = CHOLP(A, 0) forces P = EYE(SIZE(A)), and therefore behaves
% like [R, I] = CHOL(A).
% This routine is based on the LINPACK routine CCHDC. It works
% for both real and complex matrices.
%
% Reference:
% N. J. Higham, Accuracy and Stability of Numerical Algorithms,
% Second edition, Society for Industrial and Applied Mathematics,
% Philadelphia, PA, 2002; sec. 10.3.
if nargin == 1, piv = 1; end
n = length(A);
pp = 1:n;
I = 0;
for k = 1:n
if piv
d = diag(A);
[big, m] = max( d(k:n) );
m = m+k-1;
else
big = A(k,k); m = k;
end
if big < 0, I = k; break, end
% Symmetric row/column permutations.
if m ~= k
A(:, [k m]) = A(:, [m k]);
A([k m], :) = A([m k], :);
pp( [k m] ) = pp( [m k] );
end
if big == 0
if norm(A(k+1:n,k)) ~= 0
I = k; break
else
continue
end
end
A(k,k) = sqrt( A(k,k) );
if k == n, break, end
A(k, k+1:n) = A(k, k+1:n) / A(k,k);
% For simplicity update the whole of the remaining submatrix (rather
% than just the upper triangle).
j = k+1:n;
A(j,j) = A(j,j) - A(k,j)'*A(k,j);
end
R = triu(A);
if I > 0
if nargout < 3, error('Matrix must be positive semidefinite.'), end
R = R(1:I-1,:);
end
if piv == 0
P = I;
else
P = eye(n); P = P(:,pp);
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -