⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gj.m

📁 本压缩文件提供了matlab的时间序列工具箱
💻 M
字号:
function x = gj(A, b, piv)
%GJ        Gauss-Jordan elimination to solve Ax = b.
%          x = GJ(A, b, PIV) solves Ax = b by Gauss-Jordan elimination,
%          where A is a square, nonsingular matrix.
%          PIV determines the form of pivoting:
%              PIV = 0:           no pivoting,
%              PIV = 1 (default): partial pivoting.

%          Reference:
%          N. J. Higham, Accuracy and Stability of Numerical Algorithms,
%          Second edition, Society for Industrial and Applied Mathematics,
%          Philadelphia, PA, 2002; sec. 14.4.

n = length(A);
if nargin < 3, piv = 1; end

for k=1:n
    if piv
       % Partial pivoting (below the diagonal).
       [colmax, i] = max( abs(A(k:n, k)) );
       i = k+i-1;
       if i ~= k
          A( [k, i], : ) = A( [i, k], : );
          b( [k, i] ) = b( [i, k] );
       end
    end

    irange = [1:k-1 k+1:n];
    jrange = k:n;
    mult = A(irange,k)/A(k,k); % Multipliers.
    A(irange, jrange) =  A(irange, jrange) - mult*A(k, jrange);
    b(irange) =  b(irange) - mult*b(k);

end

x = diag(diag(A))\b;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -