📄 sphere_project.m
字号:
function V = sphere_project(v,r,c)
% SPHERE_PROJECT - project point X,Y,Z to the surface of sphere radius r
%
% V = sphere_project(v,r,c)
%
% Cartesian inputs:
% v is the vertex matrix, Nx3 (XYZ)
% r is the sphere radius, 1x1 (default 1)
% c is the sphere centroid, 1x3 (default 0,0,0)
%
% XYZ are converted to spherical coordinates and their radius is
% adjusted according to r, from c toward XYZ (defined with theta,phi)
%
% V is returned as Cartesian 3D coordinates
%
% $Revision: 1.2 $ $Date: 2003/03/02 03:20:44 $
% Licence: GNU GPL, no implied or express warranties
% History: 06/2002, Darren.Weber@flinders.edu.au, created
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~exist('v','var'),
msg = sprintf('SPHERE_PROJECT: No input vertices (X,Y,Z)\n');
error(msg);
end
X = v(:,1);
Y = v(:,2);
Z = v(:,3);
if ~exist('c','var'),
xo = 0;
yo = 0;
zo = 0;
else
xo = c(1);
yo = c(2);
zo = c(3);
end
if ~exist('r','var'), r = 1; end
% Convert Cartesian X,Y,Z to spherical (radians)
theta = atan2( (Y-yo), (X-xo) );
phi = atan2( sqrt( (X-xo).^2 + (Y-yo).^2 ), (Z-zo) );
% do not calc: r = sqrt( (X-xo).^2 + (Y-yo).^2 + (Z-zo).^2);
% Recalculate X,Y,Z for constant r, given theta & phi.
R = ones(size(phi)) * r;
x = R .* sin(phi) .* cos(theta);
y = R .* sin(phi) .* sin(theta);
z = R .* cos(phi);
V = [x y z];
return
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -