📄 qpdec.m
字号:
function [p0, p1] = qpdec(x, type)
% QPDEC Quincunx Polyphase Decomposition
%
% [p0, p1] = qpdec(x, [type])
%
% Input:
% x: input image
% type: [optional] one of {'1r', '1c', '2r', '2c'} default is '1r'
% '1' and '2' for selecting the quincunx matrices:
% Q1 = [1, -1; 1, 1] or Q2 = [1, 1; -1, 1]
% 'r' and 'c' for suppresing row or column
%
% Output:
% p0, p1: two qunincunx polyphase components of the image
if ~exist('type', 'var')
type = '1r';
end
% Quincunx downsampling using the Smith decomposition:
% Q1 = R2 * D1 * R3
% = R3 * D2 * R2
% and,
% Q2 = R1 * D1 * R4
% = R4 * D2 * R1
%
% where D1 = [2, 0; 0, 1] and D2 = [1, 0; 0, 2].
% See RESAMP for the definition of the resampling matrices R's
switch type
case {'1r'} % Q1 = R2 * D1 * R3
y = resamp(x, 2);
p0 = resamp(y(1:2:end, :), 3);
% inv(R2) * [0; 1] = [1; 1]
p1 = resamp(y(2:2:end, [2:end, 1]), 3);
case {'1c'} % Q1 = R3 * D2 * R2
y = resamp(x, 3);
p0 = resamp(y(:, 1:2:end), 2);
% inv(R3) * [0; 1] = [0; 1]
p1 = resamp(y(:, 2:2:end), 2);
case {'2r'} % Q2 = R1 * D1 * R4
y = resamp(x, 1);
p0 = resamp(y(1:2:end, :), 4);
% inv(R1) * [1; 0] = [1; 0]
p1 = resamp(y(2:2:end, :), 4);
case {'2c'} % Q2 = R4 * D2 * R1
y = resamp(x, 4);
p0 = resamp(y(:, 1:2:end), 1);
% inv(R4) * [1; 0] = [1; 1]
p1 = resamp(y([2:end, 1], 2:2:end), 1);
otherwise
error('Invalid argument type');
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -