⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mhmm_em_demo.m

📁 利用HMM的方法的三种语音识别算法
💻 M
字号:
if 1  O = 4;  T = 10;  nex = 50;  M = 2;  Q = 3;else  O = 8;          %Number of coefficients in a vector   T = 420;         %Number of vectors in a sequence   nex = 1;        %Number of sequences   M = 1;          %Number of mixtures   Q = 6;          %Number of states endcov_type = 'full';data = randn(O,T,nex);% initial guess of parametersprior0 = normalise(rand(Q,1));transmat0 = mk_stochastic(rand(Q,Q));if 0  Sigma0 = repmat(eye(O), [1 1 Q M]);  % Initialize each mean to a random data point  indices = randperm(T*nex);  mu0 = reshape(data(:,indices(1:(Q*M))), [O Q M]);  mixmat0 = mk_stochastic(rand(Q,M));else  [mu0, Sigma0] = mixgauss_init(Q*M, data, cov_type);  mu0 = reshape(mu0, [O Q M]);  Sigma0 = reshape(Sigma0, [O O Q M]);  mixmat0 = mk_stochastic(rand(Q,M));end[LL, prior1, transmat1, mu1, Sigma1, mixmat1] = ...    mhmm_em(data, prior0, transmat0, mu0, Sigma0, mixmat0, 'max_iter', 5);loglik = mhmm_logprob(data, prior1, transmat1, mu1, Sigma1, mixmat1);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -