📄 glmhess.m
字号:
function [h, hdata] = glmhess(net, x, t, hdata)
%GLMHESS Evaluate the Hessian matrix for a generalised linear model.
%
% Description
% H = GLMHESS(NET, X, T) takes a GLM network data structure NET, a
% matrix X of input values, and a matrix T of target values and returns
% the full Hessian matrix H corresponding to the second derivatives of
% the negative log posterior distribution, evaluated for the current
% weight and bias values as defined by NET. Note that the target data
% is not required in the calculation, but is included to make the
% interface uniform with NETHESS. For linear and logistic outputs, the
% computation is very simple and is done (in effect) in one line in
% GLMTRAIN.
%
% [H, HDATA] = GLMHESS(NET, X, T) returns both the Hessian matrix H and
% the contribution HDATA arising from the data dependent term in the
% Hessian.
%
% H = GLMHESS(NET, X, T, HDATA) takes a network data structure NET, a
% matrix X of input values, and a matrix T of target values, together
% with the contribution HDATA arising from the data dependent term in
% the Hessian, and returns the full Hessian matrix H corresponding to
% the second derivatives of the negative log posterior distribution.
% This version saves computation time if HDATA has already been
% evaluated for the current weight and bias values.
%
% See also
% GLM, GLMTRAIN, HESSCHEK, NETHESS
%
% Copyright (c) Ian T Nabney (1996-2001)
% Check arguments for consistency
errstring = consist(net, 'glm', x, t);
if ~isempty(errstring);
error(errstring);
end
ndata = size(x, 1);
nparams = net.nwts;
nout = net.nout;
p = glmfwd(net, x);
inputs = [x ones(ndata, 1)];
if nargin == 3
hdata = zeros(nparams); % Full Hessian matrix
% Calculate data component of Hessian
switch net.outfn
case 'linear'
% No weighting function here
out_hess = [x ones(ndata, 1)]'*[x ones(ndata, 1)];
for j = 1:nout
hdata = rearrange_hess(net, j, out_hess, hdata);
end
case 'logistic'
% Each output is independent
e = ones(1, net.nin+1);
link_deriv = p.*(1-p);
out_hess = zeros(net.nin+1);
for j = 1:nout
inputs = [x ones(ndata, 1)].*(sqrt(link_deriv(:,j))*e);
out_hess = inputs'*inputs; % Hessian for this output
hdata = rearrange_hess(net, j, out_hess, hdata);
end
case 'softmax'
bb_start = nparams - nout + 1; % Start of bias weights block
ex_hess = zeros(nparams); % Contribution to Hessian from single example
for m = 1:ndata
X = x(m,:)'*x(m,:);
a = diag(p(m,:))-((p(m,:)')*p(m,:));
ex_hess(1:nparams-nout,1:nparams-nout) = kron(a, X);
ex_hess(bb_start:nparams, bb_start:nparams) = a.*ones(net.nout, net.nout);
temp = kron(a, x(m,:));
ex_hess(bb_start:nparams, 1:nparams-nout) = temp;
ex_hess(1:nparams-nout, bb_start:nparams) = temp';
hdata = hdata + ex_hess;
end
otherwise
error(['Unknown activation function ', net.outfn]);
end
end
[h, hdata] = hbayes(net, hdata);
function hdata = rearrange_hess(net, j, out_hess, hdata)
% Because all the biases come after all the input weights,
% we have to rearrange the blocks that make up the network Hessian.
% This function assumes that we are on the jth output and that all outputs
% are independent.
bb_start = net.nwts - net.nout + 1; % Start of bias weights block
ob_start = 1+(j-1)*net.nin; % Start of weight block for jth output
ob_end = j*net.nin; % End of weight block for jth output
b_index = bb_start+(j-1); % Index of bias weight
% Put input weight block in right place
hdata(ob_start:ob_end, ob_start:ob_end) = out_hess(1:net.nin, 1:net.nin);
% Put second derivative of bias weight in right place
hdata(b_index, b_index) = out_hess(net.nin+1, net.nin+1);
% Put cross terms (input weight v bias weight) in right place
hdata(b_index, ob_start:ob_end) = out_hess(net.nin+1,1:net.nin);
hdata(ob_start:ob_end, b_index) = out_hess(1:net.nin, net.nin+1);
return
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -