📄 mlperr.m
字号:
function [e, edata, eprior] = mlperr(net, x, t)
%MLPERR Evaluate error function for 2-layer network.
%
% Description
% E = MLPERR(NET, X, T) takes a network data structure NET together
% with a matrix X of input vectors and a matrix T of target vectors,
% and evaluates the error function E. The choice of error function
% corresponds to the output unit activation function. Each row of X
% corresponds to one input vector and each row of T corresponds to one
% target vector.
%
% [E, EDATA, EPRIOR] = MLPERR(NET, X, T) additionally returns the data
% and prior components of the error, assuming a zero mean Gaussian
% prior on the weights with inverse variance parameters ALPHA and BETA
% taken from the network data structure NET.
%
% See also
% MLP, MLPPAK, MLPUNPAK, MLPFWD, MLPBKP, MLPGRAD
%
% Copyright (c) Ian T Nabney (1996-2001)
% Check arguments for consistency
errstring = consist(net, 'mlp', x, t);
if ~isempty(errstring);
error(errstring);
end
[y, z, a] = mlpfwd(net, x);
switch net.outfn
case 'linear' % Linear outputs
edata = 0.5*sum(sum((y - t).^2));
case 'logistic' % Logistic outputs
% Ensure that log(1-y) is computable: need exp(a) > eps
maxcut = -log(eps);
% Ensure that log(y) is computable
mincut = -log(1/realmin - 1);
a = min(a, maxcut);
a = max(a, mincut);
y = 1./(1 + exp(-a));
edata = - sum(sum(t.*log(y) + (1 - t).*log(1 - y)));
case 'softmax' % Softmax outputs
nout = size(a,2);
% Ensure that sum(exp(a), 2) does not overflow
maxcut = log(realmax) - log(nout);
% Ensure that exp(a) > 0
mincut = log(realmin);
a = min(a, maxcut);
a = max(a, mincut);
temp = exp(a);
y = temp./(sum(temp, 2)*ones(1,nout));
% Ensure that log(y) is computable
y(y<realmin) = realmin;
edata = - sum(sum(t.*log(y)));
otherwise
error(['Unknown activation function ', net.outfn]);
end
[e, edata, eprior] = errbayes(net, edata);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -