📄 glmgrad.m
字号:
function [g, gdata, gprior] = glmgrad(net, x, t)
%GLMGRAD Evaluate gradient of error function for generalized linear model.
%
% Description
% G = GLMGRAD(NET, X, T) takes a generalized linear model data
% structure NET together with a matrix X of input vectors and a matrix
% T of target vectors, and evaluates the gradient G of the error
% function with respect to the network weights. The error function
% corresponds to the choice of output unit activation function. Each
% row of X corresponds to one input vector and each row of T
% corresponds to one target vector.
%
% [G, GDATA, GPRIOR] = GLMGRAD(NET, X, T) also returns separately the
% data and prior contributions to the gradient.
%
% See also
% GLM, GLMPAK, GLMUNPAK, GLMFWD, GLMERR, GLMTRAIN
%
% Copyright (c) Ian T Nabney (1996-2001)
% Check arguments for consistency
errstring = consist(net, 'glm', x, t);
if ~isempty(errstring);
error(errstring);
end
y = glmfwd(net, x);
delout = y - t;
gw1 = x'*delout;
gb1 = sum(delout, 1);
gdata = [gw1(:)', gb1];
[g, gdata, gprior] = gbayes(net, gdata);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -