📄 rbfjacob.m
字号:
function jac = rbfjacob(net, x)
%RBFJACOB Evaluate derivatives of RBF network outputs with respect to inputs.
%
% Description
% G = RBFJACOB(NET, X) takes a network data structure NET and a matrix
% of input vectors X and returns a three-index matrix G whose I, J, K
% element contains the derivative of network output K with respect to
% input parameter J for input pattern I.
%
% See also
% RBF, RBFGRAD, RBFBKP
%
% Copyright (c) Ian T Nabney (1996-2001)
% Check arguments for consistency
errstring = consist(net, 'rbf', x);
if ~isempty(errstring);
error(errstring);
end
if ~strcmp(net.outfn, 'linear')
error('Function only implemented for linear outputs')
end
[y, z, n2] = rbffwd(net, x);
ndata = size(x, 1);
jac = zeros(ndata, net.nin, net.nout);
Psi = zeros(net.nin, net.nhidden);
% Calculate derivative of activations wrt n2
switch net.actfn
case 'gaussian'
dz = -z./(ones(ndata, 1)*net.wi);
case 'tps'
dz = 2*(1 + log(n2+(n2==0)));
case 'r4logr'
dz = 2*(n2.*(1+2.*log(n2+(n2==0))));
otherwise
error(['Unknown activation function ', net.actfn]);
end
% Ignore biases as they cannot affect Jacobian
for n = 1:ndata
Psi = (ones(net.nin, 1)*dz(n, :)).* ...
(x(n, :)'*ones(1, net.nhidden) - net.c');
% Now compute the Jacobian
jac(n, :, :) = Psi * net.w2;
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -