📄 glmderiv.m
字号:
function g = glmderiv(net, x)
%GLMDERIV Evaluate derivatives of GLM outputs with respect to weights.
%
% Description
% G = GLMDERIV(NET, X) takes a network data structure NET and a matrix
% of input vectors X and returns a three-index matrix mat{g} whose I,
% J, K element contains the derivative of network output K with respect
% to weight or bias parameter J for input pattern I. The ordering of
% the weight and bias parameters is defined by GLMUNPAK.
%
% Copyright (c) Ian T Nabney (1996-2001)
% Check arguments for consistency
errstring = consist(net, 'glm', x);
if ~isempty(errstring)
error(errstring);
end
ndata = size(x, 1);
if isfield(net, 'mask')
nwts = size(find(net.mask), 1);
mask_array = logical(net.mask)*ones(1, net.nout);
else
nwts = net.nwts;
end
g = zeros(ndata, nwts, net.nout);
temp = zeros(net.nwts, net.nout);
for n = 1:ndata
% Weight matrix w1
temp(1:(net.nin*net.nout), :) = kron(eye(net.nout), (x(n, :))');
% Bias term b1
temp(net.nin*net.nout+1:end, :) = eye(net.nout);
if isfield(net, 'mask')
g(n, :, :) = reshape(temp(find(mask_array)), nwts, net.nout);
else
g(n, :, :) = temp;
end
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -