📄 gbayes.m
字号:
function [g, gdata, gprior] = gbayes(net, gdata)
%GBAYES Evaluate gradient of Bayesian error function for network.
%
% Description
% G = GBAYES(NET, GDATA) takes a network data structure NET together
% the data contribution to the error gradient for a set of inputs and
% targets. It returns the regularised error gradient using any zero
% mean Gaussian priors on the weights defined in NET. In addition, if
% a MASK is defined in NET, then the entries in G that correspond to
% weights with a 0 in the mask are removed.
%
% [G, GDATA, GPRIOR] = GBAYES(NET, GDATA) additionally returns the data
% and prior components of the error.
%
% See also
% ERRBAYES, GLMGRAD, MLPGRAD, RBFGRAD
%
% Copyright (c) Ian T Nabney (1996-2001)
% Evaluate the data contribution to the gradient.
if (isfield(net, 'mask'))
gdata = gdata(logical(net.mask));
end
if isfield(net, 'beta')
g1 = gdata*net.beta;
else
g1 = gdata;
end
% Evaluate the prior contribution to the gradient.
if isfield(net, 'alpha')
w = netpak(net);
if size(net.alpha) == [1 1]
gprior = w;
g2 = net.alpha*gprior;
else
if (isfield(net, 'mask'))
nindx_cols = size(net.index, 2);
nmask_rows = size(find(net.mask), 1);
index = reshape(net.index(logical(repmat(net.mask, ...
1, nindx_cols))), nmask_rows, nindx_cols);
else
index = net.index;
end
ngroups = size(net.alpha, 1);
gprior = index'.*(ones(ngroups, 1)*w);
g2 = net.alpha'*gprior;
end
else
gprior = 0;
g2 = 0;
end
g = g1 + g2;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -