📄 linemin.m
字号:
function [x, options] = linemin(f, pt, dir, fpt, options, ...
varargin)
%LINEMIN One dimensional minimization.
%
% Description
% [X, OPTIONS] = LINEMIN(F, PT, DIR, FPT, OPTIONS) uses Brent's
% algorithm to find the minimum of the function F(X) along the line DIR
% through the point PT. The function value at the starting point is
% FPT. The point at which F has a local minimum is returned as X. The
% function value at that point is returned in OPTIONS(8).
%
% LINEMIN(F, PT, DIR, FPT, OPTIONS, P1, P2, ...) allows additional
% arguments to be passed to F().
%
% The optional parameters have the following interpretations.
%
% OPTIONS(1) is set to 1 to display error values.
%
% OPTIONS(2) is a measure of the absolute precision required for the
% value of X at the solution.
%
% OPTIONS(3) is a measure of the precision required of the objective
% function at the solution. Both this and the previous condition must
% be satisfied for termination.
%
% OPTIONS(14) is the maximum number of iterations; default 100.
%
% See also
% CONJGRAD, MINBRACK, QUASINEW
%
% Copyright (c) Ian T Nabney (1996-2001)
% Set up the options.
if(options(14))
niters = options(14);
else
niters = 100;
end
options(10) = 0; % Initialise count of function evaluations
display = options(1);
% Check function string
f = fcnchk(f, length(varargin));
% Value of golden section (1 + sqrt(5))/2.0
phi = 1.6180339887499;
cphi = 1 - 1/phi;
TOL = sqrt(eps); % Maximal fractional precision
TINY = 1.0e-10; % Can't use fractional precision when minimum is at 0
% Bracket the minimum
[br_min, br_mid, br_max, num_evals] = feval('minbrack', 'linef', ...
0.0, 1.0, fpt, f, pt, dir, varargin{:});
options(10) = options(10) + num_evals; % Increment number of fn. evals
% No gradient evals in minbrack
% Use Brent's algorithm to find minimum
% Initialise the points and function values
w = br_mid; % Where second from minimum is
v = br_mid; % Previous value of w
x = v; % Where current minimum is
e = 0.0; % Distance moved on step before last
fx = feval('linef', x, f, pt, dir, varargin{:});
options(10) = options(10) + 1;
fv = fx; fw = fx;
for n = 1:niters
xm = 0.5.*(br_min+br_max); % Middle of bracket
% Make sure that tolerance is big enough
tol1 = TOL * (max(abs(x))) + TINY;
% Decide termination on absolute precision required by options(2)
if (max(abs(x - xm)) <= options(2) & br_max-br_min < 4*options(2))
options(8) = fx;
return;
end
% Check if step before last was big enough to try a parabolic step.
% Note that this will fail on first iteration, which must be a golden
% section step.
if (max(abs(e)) > tol1)
% Construct a trial parabolic fit through x, v and w
r = (fx - fv) .* (x - w);
q = (fx - fw) .* (x - v);
p = (x - v).*q - (x - w).*r;
q = 2.0 .* (q - r);
if (q > 0.0) p = -p; end
q = abs(q);
% Test if the parabolic fit is OK
if (abs(p) >= abs(0.5*q*e) | p <= q*(br_min-x) | p >= q*(br_max-x))
% No it isn't, so take a golden section step
if (x >= xm)
e = br_min-x;
else
e = br_max-x;
end
d = cphi*e;
else
% Yes it is, so take the parabolic step
e = d;
d = p/q;
u = x+d;
if (u-br_min < 2*tol1 | br_max-u < 2*tol1)
d = sign(xm-x)*tol1;
end
end
else
% Step before last not big enough, so take a golden section step
if (x >= xm)
e = br_min - x;
else
e = br_max - x;
end
d = cphi*e;
end
% Make sure that step is big enough
if (abs(d) >= tol1)
u = x+d;
else
u = x + sign(d)*tol1;
end
% Evaluate function at u
fu = feval('linef', u, f, pt, dir, varargin{:});
options(10) = options(10) + 1;
% Reorganise bracket
if (fu <= fx)
if (u >= x)
br_min = x;
else
br_max = x;
end
v = w; w = x; x = u;
fv = fw; fw = fx; fx = fu;
else
if (u < x)
br_min = u;
else
br_max = u;
end
if (fu <= fw | w == x)
v = w; w = u;
fv = fw; fw = fu;
elseif (fu <= fv | v == x | v == w)
v = u;
fv = fu;
end
end
if (display == 1)
fprintf(1, 'Cycle %4d Error %11.6f\n', n, fx);
end
end
options(8) = fx;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -