📄 mdnprob.m
字号:
function [prob,a] = mdnprob(mixparams, t)
%MDNPROB Computes the data probability likelihood for an MDN mixture structure.
%
% Description
% PROB = MDNPROB(MIXPARAMS, T) computes the probability P(T) of each
% data vector in T under the Gaussian mixture model represented by the
% corresponding entries in MIXPARAMS. Each row of T represents a single
% vector.
%
% [PROB, A] = MDNPROB(MIXPARAMS, T) also computes the activations A
% (i.e. the probability P(T|J) of the data conditioned on each
% component density) for a Gaussian mixture model.
%
% See also
% MDNERR, MDNPOST
%
% Copyright (c) Ian T Nabney (1996-2001)
% David J Evans (1998)
% Check arguments for consistency
errstring = consist(mixparams, 'mdnmixes');
if ~isempty(errstring)
error(errstring);
end
ntarget = size(t, 1);
if ntarget ~= size(mixparams.centres, 1)
error('Number of targets does not match number of mixtures')
end
if size(t, 2) ~= mixparams.dim_target
error('Target dimension does not match mixture dimension')
end
dim_target = mixparams.dim_target;
ntarget = size(t, 1);
% Calculate squared norm matrix, of dimension (ndata, ncentres)
% vector (ntarget * ncentres)
dist2 = mdndist2(mixparams, t);
% Calculate variance factors
variance = 2.*mixparams.covars;
% Compute the normalisation term
normal = ((2.*pi).*mixparams.covars).^(dim_target./2);
% Now compute the activations
a = exp(-(dist2./variance))./normal;
% Accumulate negative log likelihood of targets
prob = mixparams.mixcoeffs.*a;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -