📄 gtmem.m
字号:
function [net, options, errlog] = gtmem(net, t, options)
%GTMEM EM algorithm for Generative Topographic Mapping.
%
% Description
% [NET, OPTIONS, ERRLOG] = GTMEM(NET, T, OPTIONS) uses the Expectation
% Maximization algorithm to estimate the parameters of a GTM defined by
% a data structure NET. The matrix T represents the data whose
% expectation is maximized, with each row corresponding to a vector.
% It is assumed that the latent data NET.X has been set following a
% call to GTMINIT, for example. The optional parameters have the
% following interpretations.
%
% OPTIONS(1) is set to 1 to display error values; also logs error
% values in the return argument ERRLOG. If OPTIONS(1) is set to 0, then
% only warning messages are displayed. If OPTIONS(1) is -1, then
% nothing is displayed.
%
% OPTIONS(3) is a measure of the absolute precision required of the
% error function at the solution. If the change in log likelihood
% between two steps of the EM algorithm is less than this value, then
% the function terminates.
%
% OPTIONS(14) is the maximum number of iterations; default 100.
%
% The optional return value OPTIONS contains the final error value
% (i.e. data log likelihood) in OPTIONS(8).
%
% See also
% GTM, GTMINIT
%
% Copyright (c) Ian T Nabney (1996-2001)
% Check that inputs are consistent
errstring = consist(net, 'gtm', t);
if ~isempty(errstring)
error(errstring);
end
% Sort out the options
if (options(14))
niters = options(14);
else
niters = 100;
end
display = options(1);
store = 0;
if (nargout > 2)
store = 1; % Store the error values to return them
errlog = zeros(1, niters);
end
test = 0;
if options(3) > 0.0
test = 1; % Test log likelihood for termination
end
% Calculate various quantities that remain constant during training
[ndata, tdim] = size(t);
ND = ndata*tdim;
[net.gmmnet.centres, Phi] = rbffwd(net.rbfnet, net.X);
Phi = [Phi ones(size(net.X, 1), 1)];
PhiT = Phi';
[K, Mplus1] = size(Phi);
A = zeros(Mplus1, Mplus1);
cholDcmp = zeros(Mplus1, Mplus1);
% Use a sparse representation for the weight regularizing matrix.
if (net.rbfnet.alpha > 0)
Alpha = net.rbfnet.alpha*speye(Mplus1);
Alpha(Mplus1, Mplus1) = 0;
end
for n = 1:niters
% Calculate responsibilities
[R, act] = gtmpost(net, t);
% Calculate error value if needed
if (display | store | test)
prob = act*(net.gmmnet.priors)';
% Error value is negative log likelihood of data
e = - sum(log(max(prob,eps)));
if store
errlog(n) = e;
end
if display > 0
fprintf(1, 'Cycle %4d Error %11.6f\n', n, e);
end
if test
if (n > 1 & abs(e - eold) < options(3))
options(8) = e;
return;
else
eold = e;
end
end
end
% Calculate matrix be inverted (Phi'*G*Phi + alpha*I in the papers).
% Sparse representation of G normally executes faster and saves
% memory
if (net.rbfnet.alpha > 0)
A = full(PhiT*spdiags(sum(R)', 0, K, K)*Phi + ...
(Alpha.*net.gmmnet.covars(1)));
else
A = full(PhiT*spdiags(sum(R)', 0, K, K)*Phi);
end
% A is a symmetric matrix likely to be positive definite, so try
% fast Cholesky decomposition to calculate W, otherwise use SVD.
% (PhiT*(R*t)) is computed right-to-left, as R
% and t are normally (much) larger than PhiT.
[cholDcmp singular] = chol(A);
if (singular)
if (display)
fprintf(1, ...
'gtmem: Warning -- M-Step matrix singular, using pinv.\n');
end
W = pinv(A)*(PhiT*(R'*t));
else
W = cholDcmp \ (cholDcmp' \ (PhiT*(R'*t)));
end
% Put new weights into network to calculate responsibilities
% net.rbfnet = netunpak(net.rbfnet, W);
net.rbfnet.w2 = W(1:net.rbfnet.nhidden, :);
net.rbfnet.b2 = W(net.rbfnet.nhidden+1, :);
% Calculate new distances
d = dist2(t, Phi*W);
% Calculate new value for beta
net.gmmnet.covars = ones(1, net.gmmnet.ncentres)*(sum(sum(d.*R))/ND);
end
options(8) = -sum(log(gtmprob(net, t)));
if (display >= 0)
disp(maxitmess);
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -