📄 subsets.m
字号:
function [T, bitv] = subsets(S, U, L, sorted, N)
% SUBSETS Create a set of all the subsets of S which have cardinality <= U and >= L
% T = subsets(S, U, L)
% U defaults to length(S), L defaults to 0.
% So subsets(S) generates the powerset of S.
%
% Example:
% T = subsets(1:4, 2, 1)
% T{:} = 1, 2, [1 2], 3, [1 3], [2 3], 4, [1 4], [2 4], [3 4]
%
% T = subsets(S, U, L, sorted)
% If sorted=1, return the subsets in increasing size
%
% Example:
% T = subsets(1:4, 2, 1, 1)
% T{:} = 1, 2, 3, 4, [1 2], [1 3], [2 3], [1 4], [2 4], [3 4]
%
% [T, bitv] = subsets(S, U, L, sorted, N)
% Row i of bitv is a bit vector representation of T{i},
% where bitv has N columns (representing 1:N).
% N defaults to max(S).
%
% Example:
% [T,bitv] = subsets(2:4, 2^3, 0, 0, 5)
% T{:} = [], 2, 3, [2 3], 4, [2 4], [3 4], [2 3 4]
% bitv=
% 0 0 0 0 0
% 0 1 0 0 0
% 0 0 1 0 0
% 0 1 1 0 0
% 0 0 0 1 0
% 0 1 0 1 0
% 0 0 1 1 0
% 0 1 1 1 0
n = length(S);
if nargin < 2, U = n; end
if nargin < 3, L = 0; end
if nargin < 4, sorted = 0; end
if nargin < 5, N = max(S); end
bits = ind2subv(2*ones(1,n), 1:2^n)-1;
sm = sum(bits,2);
masks = bits((sm <= U) & (sm >= L), :);
m = size(masks, 1);
T = cell(1, m);
for i=1:m
s = S(find(masks(i,:)));
T{i} = s;
end
if sorted
T = sortcell(T);
end
bitv = zeros(m, N);
bitv(:, S) = masks;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -