📄 pca.m
字号:
function [PCcoeff, PCvec] = pca(data, N)
%PCA Principal Components Analysis
%
% Description
% PCCOEFF = PCA(DATA) computes the eigenvalues of the covariance
% matrix of the dataset DATA and returns them as PCCOEFF. These
% coefficients give the variance of DATA along the corresponding
% principal components.
%
% PCCOEFF = PCA(DATA, N) returns the largest N eigenvalues.
%
% [PCCOEFF, PCVEC] = PCA(DATA) returns the principal components as well
% as the coefficients. This is considerably more computationally
% demanding than just computing the eigenvalues.
%
% See also
% EIGDEC, GTMINIT, PPCA
%
% Copyright (c) Ian T Nabney (1996-2001)
if nargin == 1
N = size(data, 2);
end
if nargout == 1
evals_only = logical(1);
else
evals_only = logical(0);
end
if N ~= round(N) | N < 1 | N > size(data, 2)
error('Number of PCs must be integer, >0, < dim');
end
% Find the sorted eigenvalues of the data covariance matrix
if evals_only
PCcoeff = eigdec(cov(data), N);
else
[PCcoeff, PCvec] = eigdec(cov(data), N);
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -