📄 randlib.c
字号:
ARGUMENTS N : NUMBER OF BERNOULLI TRIALS (INPUT) PP : PROBABILITY OF SUCCESS IN EACH TRIAL (INPUT) ISEED: RANDOM NUMBER SEED (INPUT AND OUTPUT) JX: RANDOMLY GENERATED OBSERVATION (OUTPUT) VARIABLES PSAVE: VALUE OF PP FROM THE LAST CALL TO BTPEC NSAVE: VALUE OF N FROM THE LAST CALL TO BTPEC XNP: VALUE OF THE MEAN FROM THE LAST CALL TO BTPEC P: PROBABILITY USED IN THE GENERATION PHASE OF BTPEC FFM: TEMPORARY VARIABLE EQUAL TO XNP + P M: INTEGER VALUE OF THE CURRENT MODE FM: FLOATING POINT VALUE OF THE CURRENT MODE XNPQ: TEMPORARY VARIABLE USED IN SETUP AND SQUEEZING STEPS P1: AREA OF THE TRIANGLE C: HEIGHT OF THE PARALLELOGRAMS XM: CENTER OF THE TRIANGLE XL: LEFT END OF THE TRIANGLE XR: RIGHT END OF THE TRIANGLE AL: TEMPORARY VARIABLE XLL: RATE FOR THE LEFT EXPONENTIAL TAIL XLR: RATE FOR THE RIGHT EXPONENTIAL TAIL P2: AREA OF THE PARALLELOGRAMS P3: AREA OF THE LEFT EXPONENTIAL TAIL P4: AREA OF THE RIGHT EXPONENTIAL TAIL U: A U(0,P4) RANDOM VARIATE USED FIRST TO SELECT ONE OF THE FOUR REGIONS AND THEN CONDITIONALLY TO GENERATE A VALUE FROM THE REGION V: A U(0,1) RANDOM NUMBER USED TO GENERATE THE RANDOM VALUE (REGION 1) OR TRANSFORMED INTO THE VARIATE TO ACCEPT OR REJECT THE CANDIDATE VALUE IX: INTEGER CANDIDATE VALUE X: PRELIMINARY CONTINUOUS CANDIDATE VALUE IN REGION 2 LOGIC AND A FLOATING POINT IX IN THE ACCEPT/REJECT LOGIC K: ABSOLUTE VALUE OF (IX-M) F: THE HEIGHT OF THE SCALED DENSITY FUNCTION USED IN THE ACCEPT/REJECT DECISION WHEN BOTH M AND IX ARE SMALL ALSO USED IN THE INVERSE TRANSFORMATION R: THE RATIO P/Q G: CONSTANT USED IN CALCULATION OF PROBABILITY MP: MODE PLUS ONE, THE LOWER INDEX FOR EXPLICIT CALCULATION OF F WHEN IX IS GREATER THAN M IX1: CANDIDATE VALUE PLUS ONE, THE LOWER INDEX FOR EXPLICIT CALCULATION OF F WHEN IX IS LESS THAN M I: INDEX FOR EXPLICIT CALCULATION OF F FOR BTPE AMAXP: MAXIMUM ERROR OF THE LOGARITHM OF NORMAL BOUND YNORM: LOGARITHM OF NORMAL BOUND ALV: NATURAL LOGARITHM OF THE ACCEPT/REJECT VARIATE V X1,F1,Z,W,Z2,X2,F2, AND W2 ARE TEMPORARY VARIABLES TO BE USED IN THE FINAL ACCEPT/REJECT TEST QN: PROBABILITY OF NO SUCCESS IN N TRIALS REMARK IX AND JX COULD LOGICALLY BE THE SAME VARIABLE, WHICH WOULD SAVE A MEMORY POSITION AND A LINE OF CODE. HOWEVER, SOME COMPILERS (E.G.,CDC MNF) OPTIMIZE BETTER WHEN THE ARGUMENTS ARE NOT INVOLVED. ISEED NEEDS TO BE DOUBLE PRECISION IF THE IMSL ROUTINE GGUBFS IS USED TO GENERATE UNIFORM RANDOM NUMBER, OTHERWISE TYPE OF ISEED SHOULD BE DICTATED BY THE UNIFORM GENERATOR***************************************************************************DETERMINE APPROPRIATE ALGORITHM AND WHETHER SETUP IS NECESSARY*/{/* JJV changed initial values to ridiculous values */static float psave = -1.0E37;static long nsave = -214748365;static long ignbin,i,ix,ix1,k,m,mp,T1;static float al,alv,amaxp,c,f,f1,f2,ffm,fm,g,p,p1,p2,p3,p4,q,qn,r,u,v,w,w2,x,x1, x2,xl,xll,xlr,xm,xnp,xnpq,xr,ynorm,z,z2; if(pp != psave) goto S10; if(n != nsave) goto S20; if(xnp < 30.0) goto S150; goto S30;S10:/******SETUP, PERFORM ONLY WHEN PARAMETERS CHANGEJJV added checks to ensure 0.0 <= PP <= 1.0*/ if(pp < 0.0F) ftnstop("PP < 0.0 in IGNBIN"); if(pp > 1.0F) ftnstop("PP > 1.0 in IGNBIN"); psave = pp; p = min(psave,1.0-psave); q = 1.0-p;S20:/*JJV added check to ensure N >= 0*/ if(n < 0L) ftnstop("N < 0 in IGNBIN"); xnp = n*p; nsave = n; if(xnp < 30.0) goto S140; ffm = xnp+p; m = ffm; fm = m; xnpq = xnp*q; p1 = (long) (2.195*sqrt(xnpq)-4.6*q)+0.5; xm = fm+0.5; xl = xm-p1; xr = xm+p1; c = 0.134+20.5/(15.3+fm); al = (ffm-xl)/(ffm-xl*p); xll = al*(1.0+0.5*al); al = (xr-ffm)/(xr*q); xlr = al*(1.0+0.5*al); p2 = p1*(1.0+c+c); p3 = p2+c/xll; p4 = p3+c/xlr;S30:/******GENERATE VARIATE*/ u = ranf()*p4; v = ranf();/* TRIANGULAR REGION*/ if(u > p1) goto S40; ix = xm-p1*v+u; goto S170;S40:/* PARALLELOGRAM REGION*/ if(u > p2) goto S50; x = xl+(u-p1)/c; v = v*c+1.0-ABS(xm-x)/p1; if(v > 1.0 || v <= 0.0) goto S30; ix = x; goto S70;S50:/* LEFT TAIL*/ if(u > p3) goto S60; ix = xl+log(v)/xll; if(ix < 0) goto S30; v *= ((u-p2)*xll); goto S70;S60:/* RIGHT TAIL*/ ix = xr-log(v)/xlr; if(ix > n) goto S30; v *= ((u-p3)*xlr);S70:/******DETERMINE APPROPRIATE WAY TO PERFORM ACCEPT/REJECT TEST*/ k = ABS(ix-m); if(k > 20 && k < xnpq/2-1) goto S130;/* EXPLICIT EVALUATION*/ f = 1.0; r = p/q; g = (n+1)*r; T1 = m-ix; if(T1 < 0) goto S80; else if(T1 == 0) goto S120; else goto S100;S80: mp = m+1; for(i=mp; i<=ix; i++) f *= (g/i-r); goto S120;S100: ix1 = ix+1; for(i=ix1; i<=m; i++) f /= (g/i-r);S120: if(v <= f) goto S170; goto S30;S130:/* SQUEEZING USING UPPER AND LOWER BOUNDS ON ALOG(F(X))*/ amaxp = k/xnpq*((k*(k/3.0+0.625)+0.1666666666666)/xnpq+0.5); ynorm = -(k*k/(2.0*xnpq)); alv = log(v); if(alv < ynorm-amaxp) goto S170; if(alv > ynorm+amaxp) goto S30;/* STIRLING'S FORMULA TO MACHINE ACCURACY FOR THE FINAL ACCEPTANCE/REJECTION TEST*/ x1 = ix+1.0; f1 = fm+1.0; z = n+1.0-fm; w = n-ix+1.0; z2 = z*z; x2 = x1*x1; f2 = f1*f1; w2 = w*w; if(alv <= xm*log(f1/x1)+(n-m+0.5)*log(z/w)+(ix-m)*log(w*p/(x1*q))+(13860.0- (462.0-(132.0-(99.0-140.0/f2)/f2)/f2)/f2)/f1/166320.0+(13860.0-(462.0- (132.0-(99.0-140.0/z2)/z2)/z2)/z2)/z/166320.0+(13860.0-(462.0-(132.0- (99.0-140.0/x2)/x2)/x2)/x2)/x1/166320.0+(13860.0-(462.0-(132.0-(99.0 -140.0/w2)/w2)/w2)/w2)/w/166320.0) goto S170; goto S30;S140:/* INVERSE CDF LOGIC FOR MEAN LESS THAN 30*/ qn = pow(q,(double)n); r = p/q; g = r*(n+1);S150: ix = 0; f = qn; u = ranf();S160: if(u < f) goto S170; if(ix > 110) goto S150; u -= f; ix += 1; f *= (g/ix-r); goto S160;S170: if(psave > 0.5) ix = n-ix; ignbin = ix; return ignbin;}long ignnbn(long n,float p)/*********************************************************************** long ignnbn(long n,float p) GENerate Negative BiNomial random deviate Function Generates a single random deviate from a negative binomial distribution. Arguments N --> The number of trials in the negative binomial distribution from which a random deviate is to be generated. JJV (N > 0) P --> The probability of an event. JJV (0.0 < P < 1.0) Method Algorithm from page 480 of Devroye, Luc Non-Uniform Random Variate Generation. Springer-Verlag, New York, 1986.***********************************************************************/{static long ignnbn;static float y,a,r;/* .. .. Executable Statements ..*//* Check Arguments*/ if(n <= 0L) ftnstop("N <= 0 in IGNNBN"); if(p <= 0.0F) ftnstop("P <= 0.0 in IGNNBN"); if(p >= 1.0F) ftnstop("P >= 1.0 in IGNNBN");/* Generate Y, a random gamma (n,(1-p)/p) variable JJV Note: the above parametrization is consistent with Devroye, JJV but gamma (p/(1-p),n) is the equivalent in our code*/ r = (float)n; a = p/(1.0F-p);/* * JJV changed this to call SGAMMA directly * y = gengam(a,r); <- OLD */ y = sgamma(r)/a;/* Generate a random Poisson(y) variable*/ ignnbn = ignpoi(y); return ignnbn;}long ignpoi(float mu)/*********************************************************************** long ignpoi(float mu) GENerate POIsson random deviate Function Generates a single random deviate from a Poisson distribution with mean MU. Arguments mu --> The mean of the Poisson distribution from which a random deviate is to be generated. (mu >= 0.0) ignpoi <-- The random deviate. Method Renames KPOIS from TOMS as slightly modified by BWB to use RANF instead of SUNIF. For details see: Ahrens, J.H. and Dieter, U. Computer Generation of Poisson Deviates From Modified Normal Distributions. ACM Trans. Math. Software, 8, 2 (June 1982),163-179******************************************************************************************************************************************** P O I S S O N DISTRIBUTION ******************************************************************************************************************************************** FOR DETAILS SEE: AHRENS, J.H. AND DIETER, U. COMPUTER GENERATION OF POISSON DEVIATES FROM MODIFIED NORMAL DISTRIBUTIONS. ACM TRANS. MATH. SOFTWARE, 8,2 (JUNE 1982), 163 - 179. (SLIGHTLY MODIFIED VERSION OF THE PROGRAM IN THE ABOVE ARTICLE) ********************************************************************** INTEGER FUNCTION IGNPOI(IR,MU) INPUT: IR=CURRENT STATE OF BASIC RANDOM NUMBER GENERATOR MU=MEAN MU OF THE POISSON DISTRIBUTION OUTPUT: IGNPOI=SAMPLE FROM THE POISSON-(MU)-DISTRIBUTION MUPREV=PREVIOUS MU, MUOLD=MU AT LAST EXECUTION OF STEP P OR B. TABLES: COEFFICIENTS A0-A7 FOR STEP F. FACTORIALS FACT COEFFICIENTS A(K) - FOR PX = FK*V*V*SUM(A(K)*V**K)-DEL SEPARATION OF CASES A AND B*/{extern float fsign( float num, float sign );static float a0 = -0.5;static float a1 = 0.3333333;static float a2 = -0.2500068;static float a3 = 0.2000118;static float a4 = -0.1661269;static float a5 = 0.1421878;static float a6 = -0.1384794;static float a7 = 0.125006;/* JJV changed the initial values of MUPREV and MUOLD */static float muold = -1.0E37;static float muprev = -1.0E37;static float fact[10] = { 1.0,1.0,2.0,6.0,24.0,120.0,720.0,5040.0,40320.0,362880.0};/* JJV added ll to the list, for Case A */static long ignpoi,j,k,kflag,l,ll,m;static float b1,b2,c,c0,c1,c2,c3,d,del,difmuk,e,fk,fx,fy,g,omega,p,p0,px,py,q,s, t,u,v,x,xx,pp[35]; if(mu == muprev) goto S10; if(mu < 10.0) goto S120;/* C A S E A. (RECALCULATION OF S,D,LL IF MU HAS CHANGED) JJV changed l in Case A to ll*/ muprev = mu; s = sqrt(mu); d = 6.0*mu*mu;/* THE POISSON PROBABILITIES PK EXCEED THE DISCRETE NORMAL PROBABILITIES FK WHENEVER K >= M(MU). LL=IFIX(MU-1.1484) IS AN UPPER BOUND TO M(MU) FOR ALL MU >= 10 .*/ ll = (long) (mu-1.1484);S10:/* STEP N. NORMAL SAMPLE - SNORM(IR) FOR STANDARD NORMAL DEVIATE*/ g = mu+s*snorm(); if(g < 0.0) goto S20; ignpoi = (long) (g);/* STEP I. IMMEDIATE ACCEPTANCE IF IGNPOI IS LARGE ENOUGH*/ if(ignpoi >= ll) return ignpoi;/* STEP S. SQUEEZE ACCEPTANCE - SUNIF(IR) FOR (0,1)-SAMPLE U*/ fk = (float)ignpoi; difmuk = mu-fk; u = ranf(); if(d*u >= difmuk*difmuk*difmuk) return ignpoi;S20:/* STEP P. PREPARATIONS FOR STEPS Q AND H. (RECALCULATIONS OF PARAMETERS IF NECESSARY) .3989423=(2*PI)**(-.5) .416667E-1=1./24. .1428571=1./7. THE QUANTITIES B1, B2, C3, C2, C1, C0 ARE FOR THE HERMITE APPROXIMATIONS TO THE DISCRETE NORMAL PROBABILITIES FK. C=.1069/MU GUARANTEES MAJORIZATION BY THE 'HAT'-FUNCTION.*/ if(mu == muold) goto S30; muold = mu; omega = 0.3989423/s; b1 = 4.166667E-2/mu; b2 = 0.3*b1*b1; c3 = 0.1428571*b1*b2; c2 = b2-15.0*c3; c1 = b1-6.0*b2+45.0*c3; c0 = 1.0-b1+3.0*b2-15.0*c3; c = 0.1069/mu;S30: if(g < 0.0) goto S50;/* 'SUBROUTINE' F IS CALLED (KFLAG=0 FOR CORRECT RETURN)*/ kflag = 0; goto S70;S40:/* STEP Q. QUOTIENT ACCEPTANCE (RARE CASE)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -