⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hypot.html

📁 unix 下的C开发手册,还用详细的例程。
💻 HTML
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN"><html><head><!-- Copyright 1997 The Open Group, All Rights Reserved --><title>hypot</title></head><body bgcolor=white><center><font size=2>The Single UNIX &reg; Specification, Version 2<br>Copyright &copy; 1997 The Open Group</font></center><hr size=2 noshade><h4><a name = "tag_000_005_908">&nbsp;</a>NAME</h4><blockquote>hypot - Euclidean distance function</blockquote><h4><a name = "tag_000_005_909">&nbsp;</a>SYNOPSIS</h4><blockquote><pre><code>#include &lt;<a href="math.h.html">math.h</a>&gt;double hypot(double <i>x</i>, double <i>y</i>);</code></pre></blockquote><h4><a name = "tag_000_005_910">&nbsp;</a>DESCRIPTION</h4><blockquote>The<i>hypot()</i>function computes the length of the hypotenuse of a right-angled triangle:<br><img src="../images/hypot.gif" border=0><p>An application wishing to check for error situations should set<i>errno</i>to 0 before calling<i>hypot()</i>.If<i>errno</i>is non-zero on return,or the return value is HUGE_VAL or NaN,an error has occurred.</blockquote><h4><a name = "tag_000_005_911">&nbsp;</a>RETURN VALUE</h4><blockquote>Upon successful completion,<i>hypot()</i>returns the length of the hypotenuse of a right angled trianglewith sides of length<i>x</i>and<i>y</i>.<p>If the result would cause overflow, HUGE_VAL is returned and<i>errno</i>may be set to [ERANGE].<p>If<i>x</i>or<i>y</i>is NaN, NaN is returned.and<i>errno</i>may be set to [EDOM].<p>If the correct result would cause underflow, 0 is returned and<i>errno</i>may be set to [ERANGE].</blockquote><h4><a name = "tag_000_005_912">&nbsp;</a>ERRORS</h4><blockquote>The<i>hypot()</i>function may fail if:<dl compact><dt>[EDOM]<dd>The value of<i>x</i>or<i>y</i>is NaN.<dt>[ERANGE]<dd>The result overflows or underflows.</dl><p>No other errors will occur.</blockquote><h4><a name = "tag_000_005_913">&nbsp;</a>EXAMPLES</h4><blockquote>None.</blockquote><h4><a name = "tag_000_005_914">&nbsp;</a>APPLICATION USAGE</h4><blockquote>The<i>hypot()</i>function takes precautions against overflow during intermediatesteps of the computation.  If the calculated result would still overflow adouble, then<i>hypot()</i>returns HUGE_VAL.</blockquote><h4><a name = "tag_000_005_915">&nbsp;</a>FUTURE DIRECTIONS</h4><blockquote>None.</blockquote><h4><a name = "tag_000_005_916">&nbsp;</a>SEE ALSO</h4><blockquote><i><a href="isnan.html">isnan()</a></i>,<i><a href="sqrt.html">sqrt()</a></i>,<i><a href="math.h.html">&lt;math.h&gt;</a></i>.</blockquote><h4>DERIVATION</h4><blockquote>Derived from Issue 1 of the SVID.</blockquote><hr size=2 noshade><center><font size=2>UNIX &reg; is a registered Trademark of The Open Group.<br>Copyright &copy; 1997 The Open Group<br> [ <a href="../index.html">Main Index</a> | <a href="../xshix.html">XSH</a> | <a href="../xcuix.html">XCU</a> | <a href="../xbdix.html">XBD</a> | <a href="../cursesix.html">XCURSES</a> | <a href="../xnsix.html">XNS</a> ]</font></center><hr size=2 noshade></body></html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -