📄 mathhalf.c
字号:
Longword L_Mask,
L_Out;
if (var2 == 0 || L_var1 == 0) {
L_Out = L_var1;
}
else if (var2 < 0) {
/* perform a left shift */
/*----------------------*/
if (var2 <= -31) {
L_Out = (L_var1 > 0) ? LW_MAX : LW_MIN; /* saturate */
}
else
L_Out = L_shl(L_var1, (Shortword)-var2);
}
else {
if (var2 >= 31)
L_Out = (L_var1 > 0) ? 0 : 0xffffffffL;
else {
L_Mask = 0;
if (L_var1 < 0) {
L_Mask = ~L_Mask << (32 - var2);
}
L_var1 >>= var2;
L_Out = L_Mask | L_var1;
}
}
return (L_Out);
}
/***************************************************************************
*
* FUNCTION NAME: L_shl
*
* PURPOSE:
*
* Arithmetic shift left (or right).
* Arithmetically shift the input left by var2. If var2 is
* negative then an arithmetic shift right (L_shr) of L_var1 by
* -var2 is performed.
*
* INPUTS:
*
* var2
* 16 bit short signed integer (Shortword) whose value
* falls in the range 0xffff 8000 <= var2 <= 0x0000 7fff.
* L_var1
* 32 bit long signed integer (Longword) whose value
* falls in the range
* 0x8000 0000 <= L_var1 <= 0x7fff ffff.
* OUTPUTS:
*
* none
*
* RETURN VALUE:
*
* L_Out
* 32 bit long signed integer (Longword) whose value
* falls in the range
* 0x8000 0000 <= L_var1 <= 0x7fff ffff.
*
*
* IMPLEMENTATION:
*
* Arithmetically shift the 32 bit input left by var2. This
* operation maintains the sign of the input number. If var2 is
* negative then an arithmetic shift right (L_shr) of L_var1 by
* -var2 is performed. See description of L_shr for details.
*
* Equivalent to the Full-Rate GSM ">> n" operation. Note that
* ANSI-C does not guarantee operation of the C ">>" or "<<"
* operator for negative numbers.
*
* KEYWORDS: shift, arithmetic shift left,
*
*************************************************************************/
Longword L_shl(Longword L_var1, Shortword var2)
{
Longword L_Mask,
L_Out=0;
int i,
iOverflow = 0;
if (var2 == 0 || L_var1 == 0) {
L_Out = L_var1;
}
else if (var2 < 0) {
if (var2 <= -31)
L_Out = (L_var1 > 0) ? 0 : 0xffffffffL;
else
L_Out = L_shr(L_var1, (Shortword)-var2);
}
else {
if (var2 >= 31)
iOverflow = 1;
else {
if (L_var1 < 0)
L_Mask = LW_SIGN; /* sign bit mask */
else
L_Mask = 0x0;
L_Out = L_var1;
for (i = 0; i < var2 && !iOverflow; i++) {
/* check the sign bit */
L_Out = (L_Out & 0x7fffffffL) << 1;
if ((L_Mask ^ L_Out) & LW_SIGN)
iOverflow = 1;
}
}
if (iOverflow) {
L_Out = (L_var1 > 0) ? LW_MAX : LW_MIN; /* saturate */
}
}
return (L_Out);
}
/***************************************************************************
*
* FUNCTION NAME: shift_r
*
* PURPOSE:
*
* Shift and round. Perform a shift right. After shifting, use
* the last bit shifted out of the LSB to round the result up
* or down.
*
* INPUTS:
*
* var1
* 16 bit short signed integer (Shortword) whose value
* falls in the range 0xffff 8000 <= var1 <= 0x0000 7fff.
* var2
* 16 bit short signed integer (Shortword) whose value
* falls in the range 0xffff 8000 <= var2 <= 0x0000 7fff.
*
* OUTPUTS:
*
* none
*
* RETURN VALUE:
*
* swOut
* 16 bit short signed integer (Shortword) whose value
* falls in the range
* 0xffff 8000 <= swOut <= 0x0000 7fff.
*
*
* IMPLEMENTATION:
*
* Shift and round. Perform a shift right. After shifting, use
* the last bit shifted out of the LSB to round the result up
* or down.
*
* If var2 is positive perform a arithmetic left shift
* with saturation (see shl() above).
*
* If var2 is zero simply return var1.
*
* If var2 is negative perform a arithmetic right shift (shr)
* of var1 by (-var2)+1. Add the LS bit of the result to var1
* shifted right (shr) by -var2.
*
* Note that there is no constraint on var2, so if var2 is
* -0xffff 8000 then -var2 is 0x0000 8000, not 0x0000 7fff.
* This is the reason the shl function is used.
*
*
* KEYWORDS:
*
*************************************************************************/
Shortword shift_r(Shortword var1, Shortword var2)
{
Shortword swOut,
swRnd;
if (var2 >= 0)
swOut = shl(var1, var2);
else {
/* right shift */
if (var2 < -15) {
swOut = 0;
}
else {
swRnd = (Shortword)(shl(var1, (Shortword)(var2 + 1)) & (Shortword)0x1);
swOut = add(shl(var1, var2), swRnd);
}
}
return (swOut);
}
/***************************************************************************
*
* FUNCTION NAME: L_shift_r
*
* PURPOSE:
*
* Shift and round. Perform a shift right. After shifting, use
* the last bit shifted out of the LSB to round the result up
* or down.
*
* INPUTS:
*
* L_var1
* 32 bit long signed integer (Longword) whose value
* falls in the range
* 0x8000 0000 <= L_var1 <= 0x7fff ffff.
* var2
* 16 bit short signed integer (Shortword) whose value
* falls in the range 0xffff 8000 <= var2 <= 0x0000 7fff.
*
* OUTPUTS:
*
* none
*
* RETURN VALUE:
*
* L_var1
* 32 bit long signed integer (Longword) whose value
* falls in the range
* 0x8000 0000 <= L_var1 <= 0x7fff ffff.
*
*
* IMPLEMENTATION:
*
* Shift and round. Perform a shift right. After shifting, use
* the last bit shifted out of the LSB to round the result up
* or down. This is just like shift_r above except that the
* input/output is 32 bits as opposed to 16.
*
* if var2 is positve perform a arithmetic left shift
* with saturation (see L_shl() above).
*
* If var2 is zero simply return L_var1.
*
* If var2 is negative perform a arithmetic right shift (L_shr)
* of L_var1 by (-var2)+1. Add the LS bit of the result to
* L_var1 shifted right (L_shr) by -var2.
*
* Note that there is no constraint on var2, so if var2 is
* -0xffff 8000 then -var2 is 0x0000 8000, not 0x0000 7fff.
* This is the reason the L_shl function is used.
*
*
* KEYWORDS:
*
*************************************************************************/
Longword L_shift_r(Longword L_var1, Shortword var2)
{
Longword L_Out,
L_rnd;
if (var2 < -31) {
L_Out = 0;
}
else if (var2 < 0) {
/* right shift */
L_rnd = (Longword)(L_shl(L_var1, (Shortword)(var2 + 1)) & (Longword)0x1);
L_Out = L_add(L_shl(L_var1, var2), L_rnd);
}
else
L_Out = L_shl(L_var1, var2);
return (L_Out);
}
/***************************************************************************
*
* FUNCTION NAME: norm_l
*
* PURPOSE:
*
* Get normalize shift count:
*
* A 32 bit number is input (possiblly unnormalized). Output
* the positive (or zero) shift count required to normalize the
* input.
*
* INPUTS:
*
* L_var1
* 32 bit long signed integer (Longword) whose value
* falls in the range
* 0x8000 0000 <= L_var1 <= 0x7fff ffff.
*
* OUTPUTS:
*
* none
*
* RETURN VALUE:
*
* swOut
* 16 bit short signed integer (Shortword) whose value
* falls in the range
* 0 <= swOut <= 31
*
*
*
* IMPLEMENTATION:
*
* Get normalize shift count:
*
* A 32 bit number is input (possiblly unnormalized). Output
* the positive (or zero) shift count required to normalize the
* input.
*
* If zero in input, return 0 as the shift count.
*
* For non-zero numbers, count the number of left shift
* required to get the number to fall into the range:
*
* 0x4000 0000 >= normlzd number >= 0x7fff ffff (positive number)
* or
* 0x8000 0000 <= normlzd number < 0xc000 0000 (negative number)
*
* Return the number of shifts.
*
* This instruction corresponds exactly to the Full-Rate "norm"
* instruction.
*
* KEYWORDS: norm, normalization
*
*************************************************************************/
Shortword norm_l(Longword L_var1)
{
Shortword swShiftCnt;
if (L_var1 != 0) {
if (!(L_var1 & LW_SIGN)) {
/* positive input */
for (swShiftCnt = 0; !(L_var1 <= LW_MAX && L_var1 >= 0x40000000L);
swShiftCnt++) {
L_var1 = L_var1 << 1;
}
}
else {
/* negative input */
for (swShiftCnt = 0;
!(L_var1 >= LW_MIN && L_var1 < (Longword) 0xc0000000L);
swShiftCnt++) {
L_var1 = L_var1 << 1;
}
}
}
else {
swShiftCnt = 0;
}
return (swShiftCnt);
}
/***************************************************************************
*
* FUNCTION NAME: norm_s
*
* PURPOSE:
*
* Get normalize shift count:
*
* A 16 bit number is input (possiblly unnormalized). Output
* the positive (or zero) shift count required to normalize the
* input.
*
* INPUTS:
*
* var1
* 16 bit short signed integer (Shortword) whose value
* falls in the range 0xffff 8000 <= var1 <= 0x0000 7fff.
*
* OUTPUTS:
*
* none
*
* RETURN VALUE:
* swOut
* 16 bit short signed integer (Shortword) whose value
* falls in the range
* 0 <= swOut <= 15
*
*
*
* IMPLEMENTATION:
*
* Get normalize shift count:
*
* A 16 bit number is input (possiblly unnormalized). Output
* the positive (or zero) shift count required to normalize the
* input.
*
* If zero in input, return 0 as the shift count.
*
* For non-zero numbers, count the number of left shift
* required to get the number to fall into the range:
*
* 0x4000 >= normlzd number >= 0x7fff (positive number)
* or
* 0x8000 <= normlzd number < 0xc000 (negative number)
*
* Return the number of shifts.
*
* This instruction corresponds exactly to the Full-Rate "norm"
* instruction.
*
* KEYWORDS: norm, normalization
*
*************************************************************************/
Shortword norm_s(Shortword var1)
{
short swShiftCnt;
Longword L_var1;
L_var1 = L_deposit_h(var1);
swShiftCnt = norm_l(L_var1);
return (swShiftCnt);
}
/***************************************************************************
*
* FUNCTION NAME: L_mult
*
* PURPOSE:
*
* Perform a fractional multipy of the two 16 bit input numbers
* with saturation. Output a 32 bit number.
*
* INPUTS:
*
* var1
* 16 bit short signed integer (Shortword) whose value
* falls in the range 0xffff 8000 <= var1 <= 0x0000 7fff.
* var2
* 16 bit short signed integer (Shortword) whose value
* falls in the range 0xffff 8000 <= var2 <= 0x0000 7fff.
*
* OUTPUTS:
*
* none
*
* RETURN VALUE:
*
* L_Out
* 32 bit long signed integer (Longword) whose value
* falls in the range
* 0x8000 0000 <= L_var1 <= 0x7fff ffff.
*
* IMPLEMENTATION:
*
* Multiply the two the two 16 bit input numbers. If the
* result is within this range, left shift the result by one
* and output the 32 bit number. The only possible overflow
* occurs when var1==var2==-0x8000. In this case output
* 0x7fff ffff.
*
* KEYWORDS: multiply, mult, mpy
*
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -