⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lpc.c

📁 视频会议源码
💻 C
📖 第 1 页 / 共 2 页
字号:
/***** File:    lpc.c**** Description: Functions that implement linear predictive coding **      (LPC) operations.  **** Functions:****  Computing LPC coefficients:****      Comp_Lpc()**      Durbin()****  Perceptual noise weighting:****      Wght_Lpc()**      Error_Wght()****  Computing combined impulse response:****      Comp_Ir()****  Computing ringing response:****      Sub_Ring()**      Upd_Ring()****  Synthesizing speech:****      Synt()**      Spf()*//*    ITU-T G.723 Speech Coder   ANSI-C Source Code     Version 5.00    copyright (c) 1995, AudioCodes, DSP Group, France Telecom,    Universite de Sherbrooke.  All rights reserved.*/#include <stdio.h>#include "basop.h"#include "cst_lbc.h"#include "tab_lbc.h"#include "lbccodec.h"#include "decod.h"#include "util_lbc.h"#include "lpc.h"#include "coder_pc.h"#include "decod_pc.h"/***** Function:        Comp_Lpc()**** Description:     Computes the tenth-order LPC filters for an**          entire frame.  For each subframe, a**          Hamming-windowed block of 180 samples,**          centered around the subframe, is used to**          compute eleven autocorrelation coefficients.**          The Levinson-Durbin algorithm then generates**          the LPC coefficients.  This function requires**          a look-ahead of one subframe, and hence**          introduces a 7.5 ms encoding delay.**** Links to text:   Section 2.4**** Arguments:****  Word16 *UnqLpc      Empty Buffer**  Word16 PrevDat[]    Previous 2 subframes of samples (120 words)**  Word16 DataBuff[]   Current frame of samples (240 words)**** Outputs:****  Word16 UnqLpc[]     LPC coefficients for entire frame (40 words)**** Return value:    None***/void  Comp_Lpc( Word16 *UnqLpc, Word16 *PrevDat, Word16 *DataBuff ){    int   i,j,k ;    Word16   Dpnt[Frame+LpcFrame-SubFrLen] ;    Word16   Vect[LpcFrame] ;    Word16   Acf_sf[LpcOrderP1*SubFrames];    Word16   ShAcf_sf[SubFrames];    Word16   Exp   ;    Word16   *curAcf;    Word16   Pk2;    Word32   Acc0,Acc1   ;    /*     * Generate a buffer of 360 samples.  This consists of 120 samples     * from the previous frame and 240 samples from the current frame.     */    for ( i = 0 ; i < LpcFrame-SubFrLen ; i ++ )        Dpnt[i] = PrevDat[i] ;    for ( i = 0 ; i < Frame ; i ++ )        Dpnt[i+LpcFrame-SubFrLen] = DataBuff[i] ;    /*     * Repeat for all subframes     */    curAcf = Acf_sf;    for ( k = 0 ; k < SubFrames ; k ++ ) {        /*        * Do windowing        */        /* Get block of 180 samples centered around current subframe */        for ( i = 0 ; i < LpcFrame ; i ++ )            Vect[i] = Dpnt[k*SubFrLen+i] ;        /* Normalize */        ShAcf_sf[k] = Vec_Norm( Vect, (Word16) LpcFrame ) ;        /* Apply the Hamming window */        for ( i = 0 ; i < LpcFrame ; i ++ )            Vect[i] = mult_r(Vect[i], HammingWindowTable[i]) ;        /*        * Compute the autocorrelation coefficients        */        /* Compute the zeroth-order coefficient (energy) */        Acc1 = (Word32) 0 ;        for ( i = 0 ; i < LpcFrame ; i ++ ) {            Acc0 = L_mult( Vect[i], Vect[i] ) ;            Acc0 = L_shr( Acc0, (Word16) 1 ) ;            Acc1 = L_add( Acc1, Acc0 ) ;        }        /* Apply a white noise correction factor of (1025/1024) */        Acc0 = L_shr( Acc1, (Word16) RidgeFact ) ;        Acc1 = L_add( Acc1, Acc0 ) ;        /* Normalize the energy */        Exp = norm_l( Acc1 ) ;        Acc1 = L_shl( Acc1, Exp ) ;        curAcf[0] = round( Acc1 ) ;        if(curAcf[0] == 0) {            for ( i = 1 ; i <= LpcOrder ; i ++ )                curAcf[i] = 0;            ShAcf_sf[k] = 40;        }        else {            /* Compute the rest of the autocorrelation coefficients.               Multiply them by a binomial coefficients lag window. */            for ( i = 1 ; i <= LpcOrder ; i ++ ) {                Acc1 = (Word32) 0 ;                for ( j = i ; j < LpcFrame ; j ++ ) {                    Acc0 = L_mult( Vect[j], Vect[j-i] ) ;                    Acc0 = L_shr( Acc0, (Word16) 1 ) ;                    Acc1 = L_add( Acc1, Acc0 ) ;                }                Acc0 = L_shl( Acc1, Exp ) ;                Acc0 = L_mls( Acc0, BinomialWindowTable[i-1] ) ;                curAcf[i] = round(Acc0) ;            }            /* Save Acf scaling factor */            ShAcf_sf[k] = add(Exp, shl(ShAcf_sf[k], 1));        }        /*         * Apply the Levinson-Durbin algorithm to generate the LPC         * coefficients        */        Durbin( &UnqLpc[k*LpcOrder], &curAcf[1], curAcf[0], &Pk2 );        CodStat.SinDet <<= 1;        if ( Pk2 > 0x799a ) {            CodStat.SinDet ++ ;        }        curAcf += LpcOrderP1;    }    /* Update sine detector */    CodStat.SinDet &= 0x7fff ;    j = CodStat.SinDet ;    k = 0 ;    for ( i = 0 ; i < 15 ; i ++ ) {        k += j & 1 ;        j >>= 1 ;    }    if ( k >= 14 )        CodStat.SinDet |= 0x8000 ;    /* Update CNG Acf memories */    Update_Acf(Acf_sf, ShAcf_sf);}/***** Function:        Durbin()**** Description:     Implements the Levinson-Durbin algorithm for a**          subframe.  The Levinson-Durbin algorithm**          recursively computes the minimum mean-squared**          error (MMSE) linear prediction filter based on the**          estimated autocorrelation coefficients.**** Links to text:   Section 2.4**** Arguments:       ****  Word16 *Lpc Empty buffer**  Word16 Corr[]   First- through tenth-order autocorrelations (10 words)**  Word16 Err  Zeroth-order autocorrelation, or energy**** Outputs:     ****  Word16 Lpc[]    LPC coefficients (10 words)**** Return value:    The error***/Word16  Durbin( Word16 *Lpc, Word16 *Corr, Word16 Err, Word16 *Pk2 ){    int   i,j   ;    Word16   Temp[LpcOrder] ;    Word16   Pk ;    Word32   Acc0,Acc1,Acc2 ; /*  * Initialize the LPC vector  */    for ( i = 0 ; i < LpcOrder ; i ++ )        Lpc[i] = (Word16) 0 ; /*  * Do the recursion.  At the ith step, the algorithm computes the  * (i+1)th - order MMSE linear prediction filter.  */    for ( i = 0 ; i < LpcOrder ; i ++ ) {/* * Compute the partial correlation (parcor) coefficient */        /* Start parcor computation */        Acc0 = L_deposit_h( Corr[i] ) ;        Acc0 = L_shr( Acc0, (Word16) 2 ) ;        for ( j = 0 ; j < i ; j ++ )            Acc0 = L_msu( Acc0, Lpc[j], Corr[i-j-1] ) ;        Acc0 = L_shl( Acc0, (Word16) 2 ) ;        /* Save sign */        Acc1 = Acc0 ;        Acc0 = L_abs( Acc0 ) ;        /* Finish parcor computation */        Acc2 = L_deposit_h( Err ) ;        if ( Acc0 >= Acc2 ) {            *Pk2 = 32767;            break ;        }        Pk = div_l( Acc0, Err ) ;        if ( Acc1 >= 0 )            Pk = negate(Pk) ; /*  * Sine detector  */        if ( i == 1 ) *Pk2 = Pk; /*  * Compute the ith LPC coefficient  */        Acc0 = L_deposit_h( negate(Pk) ) ;        Acc0 = L_shr( Acc0, (Word16) 2 ) ;        Lpc[i] = round( Acc0 ) ; /*  * Update the prediction error  */        Acc1 = L_mls( Acc1, Pk ) ;        Acc1 = L_add( Acc1, Acc2 ) ;        Err = round( Acc1 ) ; /*  * Compute the remaining LPC coefficients  */        for ( j = 0 ; j < i ; j ++ )            Temp[j] = Lpc[j] ;        for ( j = 0 ; j < i ; j ++ ) {            Acc0 = L_deposit_h( Lpc[j] ) ;            Acc0 = L_mac( Acc0, Pk, Temp[i-j-1] ) ;            Lpc[j] = round( Acc0 ) ;        }    }    return Err ;}/***** Function:        Wght_Lpc()**** Description:     Computes the formant perceptual weighting**          filter coefficients for a frame.  These**          coefficients are geometrically scaled versions**          of the unquantized LPC coefficients.**** Links to text:   Section 2.8  **** Arguments:       ****  Word16 *PerLpc      Empty Buffer**  Word16 UnqLpc[]     Unquantized LPC coefficients (40 words)**** Outputs:     ****  Word16 PerLpc[]     Perceptual weighting filter coefficients**              (80 words)**** Return value:    None***/void  Wght_Lpc( Word16 *PerLpc, Word16 *UnqLpc ){    int   i,j   ; /*  * Do for all subframes  */    for ( i = 0 ; i < SubFrames ; i ++ ) { /*  * Compute the jth FIR coefficient by multiplying the jth LPC  * coefficient by (0.9)^j.  */        for ( j = 0 ; j < LpcOrder ; j ++ )            PerLpc[j] = mult_r( UnqLpc[j], PerFiltZeroTable[j] ) ;        PerLpc += LpcOrder ;/* * Compute the jth IIR coefficient by multiplying the jth LPC * coefficient by (0.5)^j. */        for ( j = 0 ; j < LpcOrder ; j ++ )            PerLpc[j] = mult_r( UnqLpc[j], PerFiltPoleTable[j] ) ;        PerLpc += LpcOrder ;        UnqLpc += LpcOrder ;    }}/***** Function:        Error_Wght()**** Description:     Implements the formant perceptual weighting**          filter for a frame. This filter effectively**          deemphasizes the formant frequencies in the**          error signal.**** Links to text:   Section 2.8**** Arguments:****  Word16 Dpnt[]       Highpass filtered speech x[n] (240 words)**  Word16 PerLpc[]     Filter coefficients (80 words)**** Inputs:****  CodStat.WghtFirDl[] FIR filter memory from previous frame (10 words)**  CodStat.WghtIirDl[] IIR filter memory from previous frame (10 words)**** Outputs:****  Word16 Dpnt[]       Weighted speech f[n] (240 words)**** Return value:    None***/void  Error_Wght( Word16 *Dpnt, Word16 *PerLpc ){    int   i,j,k ;    Word32   Acc0  ;/* * Do for all subframes */    for ( k = 0 ; k < SubFrames ; k ++ ) {        for ( i = 0 ; i < SubFrLen ; i ++ ) {/* * Do the FIR part */            /* Filter */            Acc0 = L_mult( *Dpnt, (Word16) 0x2000 ) ;          // val1*val2*2            for ( j = 0 ; j < LpcOrder ; j ++ )                Acc0 = L_msu( Acc0, PerLpc[j], CodStat.WghtFirDl[j] ) ;            /* Update memory */            for ( j = LpcOrder-1 ; j > 0 ; j -- )                CodStat.WghtFirDl[j] = CodStat.WghtFirDl[j-1] ;            CodStat.WghtFirDl[0] = *Dpnt ; /*  * Do the IIR part  */            /* Filter */            for ( j = 0 ; j < LpcOrder ; j ++ )                Acc0 = L_mac( Acc0, PerLpc[LpcOrder+j],                                                    CodStat.WghtIirDl[j] ) ;            for ( j = LpcOrder-1 ; j > 0 ; j -- )                CodStat.WghtIirDl[j] = CodStat.WghtIirDl[j-1] ;            Acc0 = L_shl( Acc0, (Word16) 2 ) ;            /* Update memory */            CodStat.WghtIirDl[0] = round( Acc0 ) ;            *Dpnt ++ = CodStat.WghtIirDl[0] ;        }        PerLpc += 2*LpcOrder ;    }}/***** Function:        Comp_Ir()**** Description:     Computes the combined impulse response of the**          formant perceptual weighting filter, harmonic**          noise shaping filter, and synthesis filter for**          a subframe.**** Links to text:   Section 2.12**** Arguments:****  Word16 *ImpResp     Empty Buffer**  Word16 QntLpc[]     Quantized LPC coefficients (10 words)**  Word16 PerLpc[]     Perceptual filter coefficients (20 words)**  PWDEF Pw        Harmonic noise shaping filter parameters**** Outputs:****  Word16 ImpResp[]    Combined impulse response (60 words)**** Return value:    None***/void  Comp_Ir( Word16 *ImpResp, Word16 *QntLpc, Word16 *PerLpc, PWDEF Pw ){    int   i,j   ;    Word16   FirDl[LpcOrder] ;    Word16   IirDl[LpcOrder] ;    Word16   Temp[PitchMax+SubFrLen] ;    Word32   Acc0,Acc1 ; /*  * Clear all memory.  Impulse response calculation requires  * an all-zero initial state.  */    /* Perceptual weighting filter */    for ( i = 0 ; i < LpcOrder ; i ++ )        FirDl[i] = IirDl[i] = (Word16) 0 ;    /* Harmonic noise shaping filter */    for ( i = 0 ; i < PitchMax+SubFrLen ; i ++ )        Temp[i] = (Word16) 0 ;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -