⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 loki97.c

📁 LOKI97加密解密算法,用C语言实现的一种加密解密算法。
💻 C
📖 第 1 页 / 共 3 页
字号:
/* * Implements the LOKI97 block cipher.<p> * * LOKI97 is a 128-bit symmetric block cipher with a 256-bit key schedule, * which may be initialised from 128, 192, or 256-bit keys. It uses 16 rounds * of data computation using a balanced feistel network with a complex * function f which incorporates two S-P layers. The 256-bit key schedule * uses 33 rounds of an unbalanced feistel network using the same complex * function f to generate the subkeys.<p> * * LOKI97 was written by Lawrie Brown (ADFA), Josef Pieprzyk, and Jennifer * Seberry (UOW) in 1997.<p> * * <b>Copyright</b> &copy; 1998 by <a href="mailto:Lawrie.Brown@adfa.oz.au"> * Lawrie Brown</a> & ITRACE (UNSW) * * <br>All rights reserved.<p> * * Author:  Lawrie Brown * * code derived from LOKI97 java implementation by Lawrie Brown & Raif Naffah *//* include standard AES C header file */#include "loki97.h"/* Global defines and variables */#define NAME	"LOKI97"#define DEBUG	0/* * Debug diagnostics. Valid values of symbolic constant DEBUG: <p> * * Values are:<dl compact> * <dt> 1 <dd> engine calls, * <dt> 2 <dd> enc/dec round values, * <dt> 3 <dd> subkeys, * <dt> 4 <dd> func f calls, * <dt> 5 <dd> func f internals, * <dt> 6 <dd> static init. </dl> */#define debuglevel DEBUG /*  LOKI97 algorithm specific constants and tables *//* ........................................................................... *//* Generator polynomial for S-box S1, in GF(2<sup>13</sup>). */#define S1_GEN 0x2911/* Size of S-box S1, for 13-bit inputs. */#define S1_SIZE 0x2000/* Table of pre-computed S-box S1 values. */static BYTE S1[S1_SIZE];/* Generator polynomial for S-box S2, in GF(2<sup>11</sup>). */#define S2_GEN 0xAA7/* Size of S-box S2, for 11-bit inputs. */#define S2_SIZE 0x800/* Table of pre-computed S-box S2 values. */static BYTE S2[S2_SIZE];/* Constant value for Delta which is used in the key schedule */static ULONG64 DELTA = {0x9E3779B9L, 0x7F4A7C15L};/* * Table specifying the pre-computed permutation P. * nb. precompute permutations for lowest 8 bits only, *     value of P is a 64-bit wide (long) mask of the permuted input value. */static ULONG64 P[0x100];/* Flag specifying whether once-off init of S1, S2 and P has been done */static int init_done = FALSE;/* prototypes for local utility functions */static int enECB(cipherInstance *cipher, keyInstance *key, BYTE *input, 		int inputLen, BYTE *outBuffer);static int enCBC(cipherInstance *cipher, keyInstance *key, BYTE *input, 		int inputLen, BYTE *outBuffer);static int enCFB1(cipherInstance *cipher, keyInstance *key, BYTE *input, 		int inputLen, BYTE *outBuffer);static int deECB(cipherInstance *cipher, keyInstance *key, BYTE *input,		int inputLen, BYTE *outBuffer);static int deCBC(cipherInstance *cipher, keyInstance *key, BYTE *input,		int inputLen, BYTE *outBuffer);static int deCFB1(cipherInstance *cipher, keyInstance *key, BYTE *input, 		int inputLen, BYTE *outBuffer);static ULONG64 f (ULONG64 A, ULONG64 B) ;static ULONG64 add64(ULONG64 a, ULONG64 b) ;static ULONG64 sub64(ULONG64 a, ULONG64 b) ;static int exp3 (int b, int g, int n) ;static int mult (int a, int b, int g, int n) ;static ULONG64 byteToULONG64(BYTE *inp) ;static BYTE *ULONG64ToBYTE(BYTE *buf, ULONG64 I) ;static BYTE *charToBYTE(BYTE *buf, char *hex, int len) ;static ULONG64 charToULONG64(char *hex) ;static int fromHex (char ch) ;static int puthex(BYTE *out, int len, FILE *f);/*  Initialise cipher, precompute S-boxes and permutation table *//* ......................................................................... */int cipherInit(cipherInstance *cipher, BYTE mode, char *IV){    int S1_MASK = S1_SIZE - 1;	/*  mask to select S1 input bits */    int S2_MASK = S2_SIZE - 1;	/*  mask to select S2 input bits */    int i, j, k;		/*  index into S-box, P bit , out bit */    int b;			/*  S-box fn input */    long pval;			/*  perm P mask for given input value */    BYTE *input;		/*  pointer into byte array for IV */    if (debuglevel) fprintf(stderr,"%s: cipherInit(mode=%d, IV=%s)\n", NAME, mode, IV);    if (!init_done) {        /*  precompute S-box tables for S1 and S2 */        if (debuglevel > 5) fprintf(stderr,"%s: Static init of S1, S2 & P \n", NAME);        for (i = 0; i < S1_SIZE; i++) { /*  for all S1 inputs */            b = i ^ S1_MASK; /*  compute input value */            S1[i] = exp3(b, S1_GEN, S1_SIZE); /*  compute fn value */            if (debuglevel > 5) fprintf(stderr,"%s: S1[%04X] = %02X\n", NAME, i, S1[i]);        }        for (i = 0; i < S2_SIZE; i++) { /*  for all S2 inputs */            b = i ^ S2_MASK; /*  compute input value */            S2[i] = exp3(b, S2_GEN, S2_SIZE); /*  compute fn value */            if (debuglevel > 5) fprintf(stderr,"%s: S2[%04X] = %02X\n", NAME, i, S2[i]);        }            /*  initialising expanded permutation P table (for lowest BYTE only) */        /*    Permutation P maps input bits [63..0] to outputs bits: */        /*    [56, 48, 40, 32, 24, 16,  8, 0, */        /*     57, 49, 41, 33, 25, 17,  9, 1, */        /*     58, 50, 42, 34, 26, 18, 10, 2, */        /*     59, 51, 43, 35, 27, 19, 11, 3, */        /*     60, 52, 44, 36, 28, 20, 12, 4, */        /*     61, 53, 45, 37, 29, 21, 13, 5, */        /*     62, 54, 46, 38, 30, 22, 14, 6, */        /*     63, 55, 47, 39, 31, 23, 15, 7]  <- this row only used in table */        /*   since it is so regular, we can construct it on the fly */        for (i = 0; i < 0x100; i++) { /*  loop over all 8-bit inputs */            /*  for each input bit permute to specified output position */            pval = 0L;            for (j = 0, k = 7; j < 4; j++, k += 8)	/* do right half of P */                pval |= (long)((i >> j) & 0x1) << k;            P[i].r = pval;            pval = 0L;            for (j = 4, k = 7; j < 8; j++, k += 8)	/* do left half of P */                pval |= (long)((i >> j) & 0x1) << k;            P[i].l = pval;            if (debuglevel > 5) fprintf(stderr,"%s: P[%02X] = %08X%08X\n", NAME, i, P[i].l, P[i].r);        }	/* and remember that init has been done */	init_done = TRUE;    }    /* now fill out cipherInstance structure */    cipher->mode = mode;				/* copy mode over */    if (IV != NULL) {					/* IV specified */	charToBYTE(cipher->IV,IV,sizeof(cipher->IV));	/* convert IV */        /*  pack IV into IVL and IVR */	input = cipher->IV;        cipher->IVL = byteToULONG64(input); input += 8;        cipher->IVR = byteToULONG64(input); input += 8;    } else {						/* no IV, so set to 0 */	memset(cipher->IV,0,sizeof(cipher->IV));	cipher->IVL.l = cipher->IVL.r = cipher->IVR.l = cipher->IVR.r = 0L;    }    cipher->blockSize = BLOCK_SIZE*8;			/* BLOCK_SIZE in bits */    /* decide correct return value */    if ((mode == MODE_ECB)||(mode == MODE_CBC)||(mode == MODE_CFB1))        return TRUE;    else        return BAD_CIPHER_MODE;}/* * Returns residue of base b to power 3 mod g in GF(2^n). * * @param b  Base of exponentiation, the exponent being always 3. * @param g  Irreducible polynomial generating Galois Field (GF(2^n)). * @param n  Size of the galois field. * @return (b ** 3) mod g. */static int exp3 (int b, int g, int n) {    int r = b;            /*  r = b */    if (b == 0)        return 0;    b = mult(r, b, g, n); /*  r = b ** 2 */    r = mult(r, b, g, n); /*  r = b ** 3 */    return r;}/* * Returns the product of two binary numbers a and b, using the * generator g as the modulus: p = (a * b) mod g. g Generates a * suitable Galois Field in GF(2^n). * * @param a  First multiplicand. * @param b  Second multiplicand. * @param g  Irreducible polynomial generating Galois Field. * @param n  Size of the galois field. * @return (a * b) mod g. */static int mult (int a, int b, int g, int n) {    int p = 0;    while (b != 0) {        if ((b & 0x01) != 0)            p ^= a;        a <<= 1;        if (a >= n)            a ^= g;        b >>= 1;    }    return p;}/*  Basic NIST API methods for LOKI97 *//* ......................................................................... *//* Expand a user-supplied key material into a LOKI97 session key.  */int makeKey(keyInstance *key, BYTE direction, int keyLen, char *keyMaterial){    ULONG64 k4, k3, k2, k1;		/*  key schedule 128-bit entities */    ULONG64 deltan = DELTA;		/*  multiples of delta */    ULONG64 t1, t2;			/*  temps used for doing 64-bit adds */    ULONG64 f_out;			/*  fn f output value for debug */    int i = 0;				/*  index into key input */    /*  do some basic sanity checks on the keyMaterial */    if ((key == NULL) || (keyMaterial == NULL)) return BAD_KEY_INSTANCE;    if (!(direction == DIR_ENCRYPT || direction == DIR_DECRYPT))        return BAD_KEY_DIR;    if (!(keyLen == 128 || keyLen == 192 || keyLen == 256))        return BAD_KEY_MAT;    /* fill out the keyInstance structure with input params */    key->direction = direction;    key->keyLen = keyLen;    strncpy(key->keyMaterial, keyMaterial, MAX_KEY_SIZE);    /*  convert ascii hex text into into 64-bit entities: k4, k3, k2, k1 */    k4 = charToULONG64(keyMaterial); keyMaterial += 16;    k3 = charToULONG64(keyMaterial); keyMaterial += 16;    if (keyLen == 128) {   /*  128-bit key - call fn f twice to gen 256 bits */        k2 = f(k3, k4);        k1 = f(k4, k3);    } else {                /*  192 or 256-bit key - pack k2 from key data */        k2 = charToULONG64(keyMaterial); keyMaterial += 16;        if (keyLen == 192) /*  192-bit key - call fn f once to gen 256 bits */            k1 = f(k4, k3);        else {              /*  256-bit key - pack k1 from key data */            k1 = charToULONG64(keyMaterial); keyMaterial += 16;        }    }    if (debuglevel) fprintf(stderr,"%s: makeKey(%08X%08X%08X%08X%08X%08X%08X%08X,%s)\n", NAME, k4.l, k4.r, k3.l, k3.r, k2.l, k2.r, k1.l, k1.r, direction?"Dec":"Enc");    /*  iterate over all LOKI97 rounds to generate the required subkeys */    for (i = 0; i < NUM_SUBKEYS; i++) {	t1 = add64(k1,k3);		/* compute f(k1+k3+n.delta,k2) */	t2 = add64(t1,deltan);        f_out = f(t2, k2);        key->SK[i].l = k4.l ^ f_out.l;	/*  compute next subkey using fn f */        key->SK[i].r = k4.r ^ f_out.r;        k4 = k3;			/*  exchange the other words around */        k3 = k2;        k2 = k1;        k1 = key->SK[i];        deltan = add64(deltan,DELTA);	/*  next multiple of delta */        if (debuglevel > 2) fprintf(stderr,"%s: SK[%02d]=%08X%08X\t", NAME, i, key->SK[i].l, key->SK[i].r);        if (debuglevel > 2) fprintf(stderr,"f=%08X%08X,\tdeltan=%08X%08X\n", f_out.l, f_out.r, deltan.l, deltan.r);    }    return TRUE;}/* ....................................................................... *//* * blockEncrypt(cipher,key,input,inputLen,outBuffer) - *     encrypt blocks of plaintext from input to outBuffer using cipher & key. */int blockEncrypt(cipherInstance *cipher, keyInstance *key, BYTE *input, 		int inputLen, BYTE *outBuffer){    /*  do some basic sanity checks on params */    if (!init_done) return BAD_CIPHER_STATE;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -