📄 nn_var_usg.c
字号:
DNT; fprintf( fp, "-nnr report <%d> (reporting style )", nc->report); DNT; fprintf( fp, "-nnv verbose <%d> (verbosity 0/1/2 )", nc->verbose); DNT; fprintf( fp, "-nndv decverbose <%d> (verbosity in decoding)", nc->decverbose); DNT; fprintf( fp, "-nndwrite verbosity <%d> (write decoding info to file)", nc->decwrite); DNT; fprintf( fp, "-nndecfile file (file for decoding info)"); NLNE; fprintf( fp, " Neural net initialization:"); DNT; fprintf( fp, "-nnread read <%d> (whether to read wts )", nc->read); DNT; fprintf( fp, "-nnin infile (weights from (instead of default))"); DNT; fprintf( fp, "-nnout outfile (weights out (instead of default))"); DNT; fprintf( fp, "-nninit rule <%d> (how to init wts )", nc->init_rule); DNT; fprintf( fp, "-nndef_w def_w <%9.3g> (default initial weight)", nc->def_w); DNT; fprintf( fp, "-nndef_b def_b <%9.3g> (default initial bias)", nc->def_b); DNT; fprintf( fp, "-nnsigmaw0 sigma <%9.3g>(initial random wts )", nc->sigma_w0); DNT; fprintf( fp, "-nnwseed wseed <%ld> (weight randomization)", nc->wseed); NLNE; fprintf( fp, " Neural net training:"); DNT; fprintf( fp, "-nntrain train <%d> (whether to train )", nc->train); DNT; fprintf( fp, "-nnn n <%d> (training number )", nc->train_n); DNT; fprintf( fp, "-nntn n <%d> (training number )", nc->test_n); DNT; fprintf( fp, "-nntrseed trseed <%ld> (defines training set)", nc->trseed); DNT; fprintf( fp, "-nnteseed teseed <%ld> (test set )", nc->teseed); DNT; fprintf( fp, "-nnregularize r <%d> (type of regularization 0/1/2)", nc->regularize); DNT; fprintf( fp, "-nna1 a1 <%9.3g> (regularization of bias)", nc->alpha[1]); DNT; fprintf( fp, "-nna2 a2 <%9.3g> (regularization of inps)", nc->alpha[2]); DNT; fprintf( fp, "-nna3 a3 <%9.3g> (regularization of 2nd type inps)", nc->alpha[3]); NLNE; fprintf( fp, " Neural net optimizer:"); DNT; fprintf( fp, "-nnopt opt <%d> (macopt1 or 2 )", nc->opt); DNT; fprintf( fp, "-nnloops loops <%d> (Number of macopt runs)", nc->LOOP); DNT; fprintf( fp, "-nnitmax itmax <%d> (max no line searches)", nc->itmax); DNT; fprintf( fp, "-nntolmin tolmin <%9.3g>(final tolerance in training)", nc->tolmin); DNT; fprintf( fp, "-nntol0 tol0 <%9.3g> (initial tolerance in training)", nc->tol0); DNT; fprintf( fp, "-nnrich rich <%d> (expensive optimizer?)", nc->rich); DNT; fprintf( fp, "-nneos eos <%d> (termination condition is that step is small)", nc->end_on_step); DNT; fprintf( fp, "-cg cg <%d> (whether to check gradient, on how many)", nc->CG); DNT; fprintf( fp, "-nneps epsilon <%9.3g> (epsilon for check gradient)", nc->epsilon); DNT; fprintf( fp, "-nnevalH evalH <%d> (evaluate hard performance measures)", nc->evalH); NLNE; fprintf( fp, " Neural net decoding procedure:"); DNT; fprintf( fp, "-nnhp hp <%d> (1=if threshold exceeded; 2=sort)", nc->hitlist_policy); DNT; fprintf( fp, "-nnhpt t <%9.3g> (hitlist threshold )", nc->hitlist_thresh); DNT; fprintf( fp, "-nnhpn n <%d> (number to aim to hit)", nc->hitlist_n); DNT; fprintf( fp, "-nnhpl l <%9.3g> (- )", nc->hitlist_low); DNT; fprintf( fp, "-nndecodits its <%d> (max number of iterations to do when decoding)", nc->decodits); DNT; fprintf( fp, "-nndecodn n <%d> (number of examples to try to decode)", nc->decodn); DNT; fprintf( fp, "-nndecodseed seed <%ld> (seed for decoding tests)", nc->decodseed); DNT; fprintf( fp, "-nnthresh thresh <%9.3g>(hard decision boundary)", net->thresh);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -