📄 nn_var
字号:
# neural net variables## file to be read by commander.p# each line is turned into a structure entry (str)# a default-setting entry (def)# a usage-printing entry (usg)# and a command line reading entry (clr)# of these, the S, U and C can be disabled by >No S, etc.# and the D can be disabled by -.## variable type deflt flag short_name extra_action long_name#nc->report d 1 -nnr report - reporting stylenc->verbose d 1 -nnv verbose - verbosity 0/1/2nc->decverbose d 1 -nndv decverbose - verbosity in decodingnc->decwrite d 0 -nndwrite verbosity - write decoding info to filenc->decfile s - -nndecfile file nc->decwrite=2; file for decoding info#>PU NLNE; fprintf( fp, " Neural net initialization:");>PS /* Neural net initialization */## int write ; /* if write == 2 then default outfile is overridden */# int read ; /* if read == 2 then default infile is overridden */#nc->read d 0 -nnread read - whether to read wtsnc->infile s - -nnin infile nc->read=2; weights from (instead of default)nc->outfile s - -nnout outfile nc->write=2; weights out (instead of default)nc->init_rule d 1 -nninit rule - how to init wtsnc->def_w f 1.0 -nndef_w def_w - default initial weightnc->def_b f 0.0 -nndef_b def_b - default initial biasnc->sigma_w0 f 0.3 -nnsigmaw0 sigma - initial random wtsnc->wseed ld 2489 -nnwseed wseed - weight randomization#>PU NLNE; fprintf( fp, " Neural net training:");>PS /* About training */#nc->train d 0 -nntrain train - whether to trainnc->train_n d 100 -nnn n - training numbernc->test_n d 1000 -nntn n - training numbernc->trseed ld 4896 -nntrseed trseed - defines training setnc->teseed ld 126999 -nnteseed teseed - test setnc->regularize d 1 -nnregularize r - type of regularization 0/1/2>No Snc->alpha[1] f 0.000001 -nna1 a1 - regularization of biasnc->alpha[2] f 0.01 -nna2 a2 - regularization of inpsnc->alpha[3] f 20.0 -nna3 a3 - regularization of 2nd type inps>S# regularization constants: # bias is 1, inputs are 2 # initial runs gave sigma1 = 35 and s2 = 0.31 #>PU NLNE; fprintf( fp, " Neural net optimizer:");>PS /* Optimization procedure */#nc->opt d 2 -nnopt opt - macopt1 or 2nc->LOOP d 5 -nnloops loops - Number of macopt runsnc->itmax d 100 -nnitmax itmax - max no line searchesnc->tolmin f 0.00001 -nntolmin tolmin - final tolerance in trainingnc->tol0 f 0.1 -nntol0 tol0 - initial tolerance in trainingnc->rich d 0 -nnrich rich - expensive optimizer?nc->end_on_step d 1 -nneos eos - termination condition is that step is smallnc->CG d 0 -cg cg - whether to check gradient, on how manync->epsilon f 0.0001 -nneps epsilon - epsilon for check gradientnc->evalH d 1 -nnevalH evalH - evaluate hard performance measures#>PU NLNE; fprintf( fp, " Neural net decoding procedure:");>PS /* Neural net decoding procedure */#nc->hitlist_policy d 2 -nnhp hp - 1=if threshold exceeded; 2=sort nc->hitlist_thresh f 0.99 -nnhpt t - hitlist thresholdnc->hitlist_n d 10 -nnhpn n - number to aim to hit nc->hitlist_low f 0.5 -nnhpl l - -nc->decodits d 10 -nndecodits its - max number of iterations to do when decodingnc->decodn d 1000 -nndecodn n - number of examples to try to decodenc->decodseed ld 126999 -nndecodseed seed - seed for decoding tests#>PS /* various leftovers */#>No CUnc->write d 1 - - - whether to write weightsnc->writeit d 0 - - - undefined weight writing flagnc->RC d 2 - - - no of reg classesnc->tolf f 0.5 - - - factor by which tolerance decreasesnc->tol f 0.01 - - - tolerance in trainingnc->itEH d -1 - - - iterative decoder's errornc->itEHwb d -1 - - - iterative decoder's error (whole blocks)>CU>No Snet->thresh f 0.5 -nnthresh thresh - hard decision boundary>S
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -