📄 skeleton.cc
字号:
// skeleton.cc/* -------------------------------------------------------------------This is the skeleton for a new problem the user wants to tackle usinggenetic programming techniques.gpc++ - The Genetic Programming KernelThis program is free software; you can redistribute it and/or modifyit under the terms of the GNU General Public License as published bythe Free Software Foundation; either version 1, or (at your option)any later version.This program is distributed in the hope that it will be useful, butWITHOUT ANY WARRANTY; without even the implied warranty ofMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNUGeneral Public License for more details.You should have received a copy of the GNU General Public Licensealong with this program; if not, write to the Free SoftwareFoundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.Copyright 1993, 1994 Adam P. Fraser and 1996, 1997 Thomas WeinbrennerFor comments, improvements, additions (or even money) contact:Thomas WeinbrennerGrauensteinstr. 2635789 LaimbachGermanyE-mail: thomasw@emk.e-technik.th-darmstadt.deWWW: http://www.emk.e-technik.th-darmstadt/~thomasw or (Address may be out of date)Adam Fraser, Postgraduate Section, Dept of Elec & Elec Eng,Maxwell Building, University Of Salford, Salford, M5 4WT, United Kingdom.E-mail: a.fraser@eee.salford.ac.ukTel: (UK) 061 745 5000 x3633Fax: (UK) 061 745 5999------------------------------------------------------------------- */#include <stdlib.h>#include <new.h>#include <fstream.h>#include <strstream.h>#include "gp.h"#include "gpconfig.h"// Define configuration parameters and the neccessary array to// read/write the configuration to a file. If you need more// variables, just add them below and insert an entry in the// configArray.GPVariables cfg;struct GPConfigVarInformation configArray[]={ {"PopulationSize", DATAINT, &cfg.PopulationSize}, {"NumberOfGenerations", DATAINT, &cfg.NumberOfGenerations}, {"CreationType", DATAINT, &cfg.CreationType}, {"CrossoverProbability", DATADOUBLE, &cfg.CrossoverProbability}, {"CreationProbability", DATADOUBLE, &cfg.CreationProbability}, {"MaximumDepthForCreation", DATAINT, &cfg.MaximumDepthForCreation}, {"MaximumDepthForCrossover", DATAINT, &cfg.MaximumDepthForCrossover}, {"SelectionType", DATAINT, &cfg.SelectionType}, {"TournamentSize", DATAINT, &cfg.TournamentSize}, {"DemeticGrouping", DATAINT, &cfg.DemeticGrouping}, {"DemeSize", DATAINT, &cfg.DemeSize}, {"DemeticMigProbability", DATADOUBLE, &cfg.DemeticMigProbability}, {"SwapMutationProbability", DATADOUBLE, &cfg.SwapMutationProbability}, {"ShrinkMutationProbability", DATADOUBLE, &cfg.ShrinkMutationProbability}, {"AddBestToNewPopulation", DATAINT, &cfg.AddBestToNewPopulation}, {"SteadyState", DATAINT, &cfg.SteadyState}, {"", DATAINT, NULL}};// Define function and terminal identifiersconst int FUNCTION1=0;const int FUNCTION2=1;const int TERMINAL1=2;const int TERMINAL2=3;// Define class identifiersconst int MyGeneID=GPUserID;const int MyGPID=GPUserID+1;const int MyPopulationID=GPUserID+2;// Inherit the three GP classes GPGene, GP and GPPopulationclass MyGene : public GPGene{public: // Duplication (mandatory) MyGene (const MyGene& gpo) : GPGene (gpo) { } virtual GPObject& duplicate () { return *(new MyGene(*this)); } // Creation of own class objects (mandatory) MyGene (GPNode& gpo) : GPGene (gpo) {} virtual GPGene* createChild (GPNode& gpo) { return new MyGene (gpo); } // Tree evaluation (not mandatory, but somehow the trees must be // parsed to evaluate the fitness) double evaluate (); // Load and save (not mandatory) MyGene () {} virtual int isA () { return MyGeneID; } virtual GPObject* createObject() { return new MyGene; } // virtual char* load (istream& is); // virtual void save (ostream& os); // Print (not mandatory) // virtual void printOn (ostream& os); // Access children (not mandatory) MyGene* NthMyChild (int n) { return (MyGene*) GPContainer::Nth (n); }};class MyGP : public GP {public: // Duplication (mandatory) MyGP (MyGP& gpo) : GP (gpo) { } virtual GPObject& duplicate () { return *(new MyGP(*this)); } // Creation of own class objects (mandatory) MyGP (int genes) : GP (genes) {} virtual GPGene* createGene (GPNode& gpo) { return new MyGene (gpo); } // Tree evaluation (mandatory) virtual void evaluate (); // Print (not mandatory) // virtual void printOn (ostream& os); // Load and save (not mandatory) MyGP () {} virtual int isA () { return MyGPID; } virtual GPObject* createObject() { return new MyGP; } // virtual char* load (istream& is); // virtual void save (ostream& os); // Access trees (not mandatory) MyGene* NthMyGene (int n) { return (MyGene*) GPContainer::Nth (n); }};class MyPopulation : public GPPopulation{public: // Constructor (mandatory) MyPopulation (GPVariables& GPVar_, GPAdfNodeSet& adfNs_) : GPPopulation (GPVar_, adfNs_) {} // Duplication (mandatory) MyPopulation (MyPopulation& gpo) : GPPopulation(gpo) {} virtual GPObject& duplicate () { return *(new MyPopulation(*this)); } // Creation of own class objects (mandatory) virtual GP* createGP (int numOfTrees) { return new MyGP (numOfTrees); } // Load and save (not mandatory) MyPopulation () {} virtual int isA () { return MyPopulationID; } virtual GPObject* createObject() { return new MyPopulation; } // virtual char* load (istream& is); // virtual void save (ostream& os); // Print (not mandatory) // virtual void printOn (ostream& os); // Access genetic programs (not mandatory) MyGP* NthMyGP (int n) { return (MyGP*) GPContainer::Nth (n); }};// This function evaluates the fitness of a genetic tree. We have the// freedom to define this function in any way we like. double MyGene::evaluate (){ double returnValue; switch (node->value ()) { case FUNCTION1: returnValue=NthMyChild(0)->evaluate (); break; case FUNCTION2: returnValue=NthMyChild(0)->evaluate (); break; case TERMINAL1: returnValue=0.0; break; case TERMINAL2: returnValue=0.0; break; default: GPExitSystem ("MyGene::evaluate", "Undefined node value"); } return returnValue;}// Evaluate the fitness of a GP and save it into the class variable// fitness.void MyGP::evaluate (){ // Evaluate main tree stdFitness=NthMyGene (0)->evaluate ();}// Create function and terminal setvoid createNodeSet (GPAdfNodeSet& adfNs){ // Reserve space for the node sets adfNs.reserveSpace (1); // Now define the function and terminal set for each ADF and place // function/terminal sets into overall ADF container GPNodeSet& ns=*new GPNodeSet (4); adfNs.put (0, ns); // Define functions/terminals and place them into the appropriate // sets. Terminals take two arguments, functions three (the third // parameter is the number of arguments the function has) ns.putNode (*new GPNode (FUNCTION1, "FUNCTION1", 1)); ns.putNode (*new GPNode (FUNCTION2, "FUNCTION2", 1)); ns.putNode (*new GPNode (TERMINAL1, "TERMINAL1")); ns.putNode (*new GPNode (TERMINAL2, "TERMINAL2"));}void newHandler (){ cerr << "\nFatal error: Out of memory." << endl; exit (1);}int main (){ // Set up a new-handler, because we might need a lot of memory, and // we don't know it's there. set_new_handler (newHandler); // Init GP system. GPInit (1, -1); // Read configuration file. GPConfiguration config (cout, "skeleton.ini", configArray); // Print the configuration cout << cfg << endl; // Create the adf function/terminal set and print it out. GPAdfNodeSet adfNs; createNodeSet (adfNs); cout << adfNs << endl; // Open the main output file for the data and statistics file. // First set up names for data file. Remember we should delete the // string from the stream, well just a few bytes ostrstream strOutFile, strStatFile; strOutFile << "data.dat" << ends; strStatFile << "data.stc" << ends; ofstream fout (strOutFile.str()); ofstream bout (strStatFile.str()); // Create a population with this configuration cout << "Creating initial population ..." << endl; MyPopulation* pop=new MyPopulation (cfg, adfNs); pop->create (); cout << "Ok." << endl; pop->createGenerationReport (1, 0, fout, bout); // This next for statement is the actual genetic programming system // which is in essence just repeated reproduction and crossover loop // through all the generations ... MyPopulation* newPop=NULL; for (int gen=1; gen<=cfg.NumberOfGenerations; gen++) { // Create a new generation from the old one by applying the // genetic operators if (!cfg.SteadyState) newPop=new MyPopulation (cfg, adfNs); pop->generate (*newPop); // Delete the old generation and make the new the old one if (!cfg.SteadyState) { delete pop; pop=newPop; } // Create a report of this generation and how well it is doing pop->createGenerationReport (0, gen, fout, bout); } return 0;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -