📄 svm.py
字号:
import svmcfrom svmc import C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVRfrom svmc import LINEAR, POLY, RBF, SIGMOIDclass svm_parameter: # default values default_parameters = { 'svm_type' : C_SVC, 'kernel_type' : RBF, 'degree' : 3, 'gamma' : 0, # 1/k 'coef0' : 0, 'nu' : 0.5, 'cache_size' : 40, 'C' : 1, 'eps' : 1e-3, 'p' : 0.1, 'shrinking' : 1, 'nr_weight' : 0, #'param.weight_label' : 'NULL', #'param.weight' : 'NULL', } def __init__(self,**kw): self.__dict__['param'] = svmc.new_svm_parameter() for attr,val in self.default_parameters.items(): setattr(self,attr,val) for attr,val in kw.items(): setattr(self,attr,val) def __getattr__(self,attr): get_func = getattr(svmc,'svm_parameter_%s_get' % (attr)) return get_func(self.param) def __setattr__(self,attr,val): set_func = getattr(svmc,'svm_parameter_%s_set' % (attr)) set_func(self.param,val) def __repr__(self): ret = '<svm_parameter:' for name in dir(svmc): if name[:len('svm_parameter_')] == 'svm_parameter_' and name[-len('_set'):] == '_set': attr = name[len('svm_parameter_'):-len('_set')] ret = ret+' %s = %s,' % (attr,getattr(self,attr)) return ret+'>' def __del__(self): svmc.delete_svm_parameter(self.param)def _convert_to_svm_node_array(x): """ convert a sequence or mapping to an svm_node array """ data = svmc.svm_node_array(len(x)+1) svmc.svm_node_array_set(data,len(x),-1,0) import operator if operator.isMappingType(x): keys = x.keys() keys.sort() j = 0 for k in keys: svmc.svm_node_array_set(data,j,k,x[k]) j = j + 1 elif operator.isSequenceType(x): for j in range(len(x)): svmc.svm_node_array_set(data,j,j+1,x[j]) else: raise TypeError,"data must be a mapping or a sequence" return dataclass svm_problem: def __init__(self,y,x): assert len(y) == len(x) self.prob = prob = svmc.new_svm_problem() self.size = size = len(y) self.y_array = y_array = svmc.double_array(size) for i in range(size): svmc.double_set(y_array,i,y[i]) self.x_matrix = x_matrix = svmc.svm_node_matrix(size) self.data = [] self.maxlen = 0; for i in range(size): data = _convert_to_svm_node_array(x[i]) self.data.append(data); svmc.svm_node_matrix_set(x_matrix,i,data) self.maxlen = max(self.maxlen,len(x[i])) svmc.svm_problem_l_set(prob,size) svmc.svm_problem_y_set(prob,y_array) svmc.svm_problem_x_set(prob,x_matrix) def __repr__(self): return "<svm_problem: size = %s>" % (self.size) def __del__(self): svmc.delete_svm_problem(self.prob) svmc.double_destroy(self.y_array) for i in range(self.size): svmc.svm_node_array_destroy(self.data[i]) svmc.svm_node_matrix_destroy(self.x_matrix)class svm_model: def __init__(self,arg1,arg2=None): if arg2 == None: # create model from file filename = arg1 self.model = svmc.svm_load_model(filename) else: # create model from problem and parameter prob,param = arg1,arg2 if param.gamma == 0: param.gamma = 1.0/prob.maxlen self.model = svmc.svm_train(prob.prob,param.param) def predict(self,x): data = _convert_to_svm_node_array(x) ret = svmc.svm_predict(self.model,data) svmc.svm_node_array_destroy(data) return ret def save(self,filename): svmc.svm_save_model(filename,self.model) def __del__(self): svmc.svm_destroy_model(self.model)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -