⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 reconfig_sched_utils.cpp

📁 这是广泛使用的通信开源项目,对于大容量,高并发的通讯要求完全能够胜任,他广泛可用于网络游戏医学图像网关的高qos要求.更详细的内容可阅读相应的材料
💻 CPP
📖 第 1 页 / 共 4 页
字号:
                                                               const void *t)
{
    // Convert the passed pointers: the double cast is needed to
  // make Sun C++ 4.2 happy.
  TAO_RT_Info_Tuple **first =
    ACE_reinterpret_cast (TAO_RT_Info_Tuple **,
                          ACE_const_cast (void *, s));

  TAO_Reconfig_Scheduler_Entry * first_entry =
      ACE_LONGLONG_TO_PTR (TAO_Reconfig_Scheduler_Entry *,
                           (*first)->volatile_token);

  TAO_RT_Info_Tuple **second =
    ACE_reinterpret_cast (TAO_RT_Info_Tuple **,
                          ACE_const_cast (void *, t));

  TAO_Reconfig_Scheduler_Entry * second_entry =
      ACE_LONGLONG_TO_PTR (TAO_Reconfig_Scheduler_Entry *,
                           (*second)->volatile_token);

  // Check the converted pointers.
  if (first == 0 || *first == 0)
    {
      return (second == 0 || *second == 0) ? 0 : 1;
    }
  else if (second == 0 || *second == 0)
    {
      return -1;
    }

  // sort disabled tuples to the end
  if ((*first)->enabled_state () == RtecScheduler::RT_INFO_DISABLED)
  {
    return ((*second)->enabled_state () == RtecScheduler::RT_INFO_DISABLED) ? 0 : 1;
  }
  else if ((*second)->enabled_state () == RtecScheduler::RT_INFO_DISABLED)
  {
    return -1;
  }

  // First, compare by rate index.

  if ((*first)->rate_index < (*second)->rate_index)
    {
      return -1;
    }
  else if ((*second)->rate_index < (*first)->rate_index)
    {
      return 1;
    }

  // Then compare by priority.

  int result =
    TAO_RMS_FAIR_Reconfig_Sched_Strategy::compare_criticality (**first,
                                                               **second);
  if (result != 0)
    {
      return result;
    }

  // Then compare by subpriority.

  result = TAO_Reconfig_Sched_Strategy_Base::compare_subpriority (*first_entry,
                                                                  *second_entry);
  if (result != 0)
    {
      return result;
    }

  return 0;
}


// Compares two RT_Info entries by criticality alone.  Returns -1 if the
// first one is higher, 0 if they're the same, and 1 if the second one is higher.

int
TAO_RMS_FAIR_Reconfig_Sched_Strategy::compare_criticality(TAO_Reconfig_Scheduler_Entry &lhs,
                                                           TAO_Reconfig_Scheduler_Entry &rhs)
{
  ACE_UNUSED_ARG (lhs);
  ACE_UNUSED_ARG (rhs);
  // In RMS_FAIR, no consideration of criticalities
  return 0;
}

// Compares two RT_Info entries by criticality alone.  Returns -1 if the
// first one is higher, 0 if they're the same, and 1 if the second one is higher.
int
TAO_RMS_FAIR_Reconfig_Sched_Strategy::compare_criticality(TAO_RT_Info_Tuple &lhs,
                                                     TAO_RT_Info_Tuple &rhs)
{
  ACE_UNUSED_ARG (lhs);
  ACE_UNUSED_ARG (rhs);
  // In plain RMS, no consideration of criticalities
  return 0;
}

// Compares two RT_Info entries by priority alone.  Returns -1 if the
// first one is higher, 0 if they're the same, and 1 if the second one is higher.

int
TAO_RMS_FAIR_Reconfig_Sched_Strategy::compare_priority (TAO_Reconfig_Scheduler_Entry &lhs,
                                                           TAO_Reconfig_Scheduler_Entry &rhs)
{
  //differentiate by rate.
  if (lhs.actual_rt_info ()->period < rhs.actual_rt_info ()->period)
    {
      return -1;
    }
  else if (lhs.actual_rt_info ()->period > rhs.actual_rt_info ()->period)
    {
      return 1;
    }

  // They're the same if we got here.
  return 0;
}


// Compares two RT_Info tuples by priority alone.  Returns -1 if the
// first one is higher, 0 if they're the same, and 1 if the second one is higher.

int
TAO_RMS_FAIR_Reconfig_Sched_Strategy::compare_priority (TAO_RT_Info_Tuple &lhs,
                                                           TAO_RT_Info_Tuple &rhs)
{
  // In RMS_FAIR, priority is partitioned based on rate:
  if (lhs.period < rhs.period)
    {
      return -1;
    }
  else if (lhs.period > rhs.period)
    {
      return 1;
    }

  // They're the same if we got here.
  return 0;
}


// Fills in a static dispatch configuration for a priority level, based
// on the operation characteristics of a representative scheduling entry.

int
TAO_RMS_FAIR_Reconfig_Sched_Strategy::assign_config (RtecScheduler::Config_Info &info,
                                                        TAO_Reconfig_Scheduler_Entry &rse)
{
    // Global and thread priority of dispatching queue are simply
    // those assigned the representative operation it will dispatch.
    info.preemption_priority = rse.actual_rt_info ()->preemption_priority;
    info.thread_priority = rse.actual_rt_info ()->priority;

    // In RMS_FAIR, all queues are static
    info.dispatching_type = RtecScheduler::STATIC_DISPATCHING;

  return 0;
}

///////////////////////////////////////////////////
// class TAO_RMS_MLF_Reconfig_Sched_Strategy //
///////////////////////////////////////////////////


// Ordering function used to qsort an array of TAO_RT_Info_Tuple
// pointers into a total <priority, subpriority> ordering.  Returns -1
// if the first one is higher, 0 if they're the same, and 1 if the
// second one is higher.

int
TAO_RMS_MLF_Reconfig_Sched_Strategy::total_priority_comp (const void *s, const void *t)
{
  // Convert the passed pointers: the double cast is needed to
  // make Sun C++ 4.2 happy.
  TAO_Reconfig_Scheduler_Entry **first =
    ACE_reinterpret_cast (TAO_Reconfig_Scheduler_Entry **,
                          ACE_const_cast (void *, s));
  TAO_Reconfig_Scheduler_Entry **second =
    ACE_reinterpret_cast (TAO_Reconfig_Scheduler_Entry **,
                          ACE_const_cast (void *, t));

  // Check the converted pointers.
  if (first == 0 || *first == 0)
    {
      return (second == 0 || *second == 0) ? 0 : 1;
    }
  else if (second == 0 || *second == 0)
    {
      return -1;
    }

  // sort disabled entries to the end
  if ((*first)->enabled_state () == RtecScheduler::RT_INFO_DISABLED)
    {
      return ((*second)->enabled_state () == RtecScheduler::RT_INFO_DISABLED) ? 0 : 1;
    }
  else if ((*second)->enabled_state () == RtecScheduler::RT_INFO_DISABLED)
    {
      return -1;
    }


  // Check whether they are distinguished by priority, and if not,
  // then by subpriority.

  int result =
    TAO_RMS_MLF_Reconfig_Sched_Strategy::compare_priority (**first,
                                                               **second);

  if (result == 0)
    {
      return TAO_Reconfig_Sched_Strategy_Base::compare_subpriority (**first,
                                                                    **second);
    }
  else
    {
      return result;
    }
}


// Ordering function used to qsort an array of RT_Info_Tuple
// pointers into a total ordering for admission control.  Returns
// -1 if the first one is higher, 0 if they're the same, and 1 if
// the second one is higher.

int
TAO_RMS_MLF_Reconfig_Sched_Strategy::total_admission_comp (const void *s,
                                                               const void *t)
{
  // Convert the passed pointers: the double cast is needed to
  // make Sun C++ 4.2 happy.
  TAO_RT_Info_Tuple **first =
    ACE_reinterpret_cast (TAO_RT_Info_Tuple **,
                          ACE_const_cast (void *, s));

  TAO_Reconfig_Scheduler_Entry * first_entry =
    ACE_LONGLONG_TO_PTR (TAO_Reconfig_Scheduler_Entry *,
                         (*first)->volatile_token);

  TAO_RT_Info_Tuple **second =
    ACE_reinterpret_cast (TAO_RT_Info_Tuple **,
                          ACE_const_cast (void *, t));

  TAO_Reconfig_Scheduler_Entry * second_entry =
    ACE_LONGLONG_TO_PTR (TAO_Reconfig_Scheduler_Entry *,
                         (*second)->volatile_token);

  // Check the converted pointers.
  if (first == 0 || *first == 0)
    {
      return (second == 0 || *second == 0) ? 0 : 1;
    }
  else if (second == 0 || *second == 0)
    {
      return -1;
    }

  // sort disabled tuples to the end
  if ((*first)->enabled_state () == RtecScheduler::RT_INFO_DISABLED)
    {
      return ((*second)->enabled_state () == RtecScheduler::RT_INFO_DISABLED) ? 0 : 1;
    }
  else if ((*second)->enabled_state () == RtecScheduler::RT_INFO_DISABLED)
    {
      return -1;
    }

  // First, compare by rate index.

  if ((*first)->rate_index < (*second)->rate_index)
    {
      return -1;
    }
  else if ((*second)->rate_index < (*first)->rate_index)
    {
      return 1;
    }

  // Then compare by priority.

  int result =
    TAO_RMS_MLF_Reconfig_Sched_Strategy::compare_criticality (**first,
                                                                  **second);
  if (result != 0)
    {
      return result;
    }

  // Then compare by subpriority.

  result = TAO_Reconfig_Sched_Strategy_Base::compare_subpriority (*first_entry,
                                                                  *second_entry);
  if (result != 0)
    {
      return result;
    }

  return 0;
}


// Compares two RT_Info entries by criticality alone.  Returns -1 if the
// first one is higher, 0 if they're the same, and 1 if the second one is higher.

int
TAO_RMS_MLF_Reconfig_Sched_Strategy::compare_criticality(TAO_Reconfig_Scheduler_Entry &lhs,
                                                             TAO_Reconfig_Scheduler_Entry &rhs)
{
  // In RMS+MLF, priority is per criticality level: compare criticalities.

  if (lhs.actual_rt_info ()->criticality > rhs.actual_rt_info ()->criticality)
    {
      return -1;
    }
  else if (lhs.actual_rt_info ()->criticality < rhs.actual_rt_info ()->criticality)
    {
      return 1;
    }
  else
    {
      return 0;
    }
}

// Compares two RT_Info entries by criticality alone.  Returns -1 if the
// first one is higher, 0 if they're the same, and 1 if the second one is higher.
int
TAO_RMS_MLF_Reconfig_Sched_Strategy::compare_criticality(TAO_RT_Info_Tuple &lhs,
                                                             TAO_RT_Info_Tuple &rhs)
{
  if (lhs.criticality > rhs.criticality)
    {
      return -1;
    }
  else if (lhs.criticality < rhs.criticality)
    {
      return 1;
    }
  else
    {
      return 0;
    }
}

// Compares two RT_Info entries by priority alone.  Returns -1 if the
// first one is higher, 0 if they're the same, and 1 if the second one is higher.

int
TAO_RMS_MLF_Reconfig_Sched_Strategy::compare_priority (TAO_Reconfig_Scheduler_Entry &lhs,
                                                           TAO_Reconfig_Scheduler_Entry &rhs)
{
  // In RMS+MLF, priority is per criticality level: compare criticalities.
  int result = TAO_RMS_MLF_Reconfig_Sched_Strategy::compare_criticality(lhs, rhs);

  if (result != 0)
    {
      return result;
    }

  // Same criticality: if high criticality, differentiate by rate.
  if (TAO_Reconfig_Sched_Strategy_Base::is_critical (rhs))
    {
      if (lhs.actual_rt_info ()->period < rhs.actual_rt_info ()->period)
        {
          return -1;
        }
      else if (lhs.actual_rt_info ()->period > rhs.actual_rt_info ()->period)
        {
          return 1;
        }
    }

  // They're the same if we got here.
  return 0;
}


// Compares two RT_Info tuples by priority alone.  Returns -1 if the
// first one is higher, 0 if they're the same, and 1 if the second one is higher.

int
TAO_RMS_MLF_Reconfig_Sched_Strategy::compare_priority (TAO_RT_Info_Tuple &lhs,
                                                           TAO_RT_Info_Tuple &rhs)
{
  // In RMS_Dyn, priority is first partitioned per criticality level:
  // compare criticalities.

  if (lhs.criticality > rhs.criticality)
    {
      return -1;
    }
  else if (lhs.criticality < rhs.criticality)
    {
      return 1;
    }

  // Same criticality: if high criticality, differentiate by rate.
  else if (TAO_Reconfig_Sched_Strategy_Base::is_critical (rhs))
    {
      if (lhs.period < rhs.period)
        {
          return -1;
        }
      else if (lhs.period > rhs.period)
        {
          return 1;
        }
    }

  // They're the same if we got here.
  return 0;
}

// Fills in a static dispatch configuration for a priority level, based
// on the operation characteristics of a representative scheduling entry.

int
TAO_RMS_MLF_Reconfig_Sched_Strategy::assign_config (RtecScheduler::Config_Info &info,
                                                        TAO_Reconfig_Scheduler_Entry &rse)
{
  // Global and thread priority of dispatching queue are simply
  // those assigned the representative operation it will dispatch.
  info.preemption_priority = rse.actual_rt_info ()->preemption_priority;
  info.thread_priority = rse.actual_rt_info ()->priority;

  // Critical queues are static, and non-critical ones are
  // laxity-based in this strategy.
  if (TAO_Reconfig_Sched_Strategy_Base::is_critical (rse))
    {
      info.dispatching_type = RtecScheduler::STATIC_DISPATCHING;
    }
  else
    {
      info.dispatching_type = RtecScheduler::LAXITY_DISPATCHING;
    }

  return 0;
}


#endif /* TAO_RECONFIG_SCHED_UTILS_C */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -