📄 reconfig_sched_utils.cpp
字号:
orig_tuple_subset ()
{
return orig_tuple_subset_;
}
// Accessor for the set of tuples propagated via dependencies on
// other entries.
TUPLE_SET &
TAO_Reconfig_Scheduler_Entry::
prop_tuple_subset ()
{
return prop_tuple_subset_;
}
TAO_RT_Info_Tuple *
TAO_Reconfig_Scheduler_Entry::
current_admitted_tuple ()
{
return current_admitted_tuple_;
}
void
TAO_Reconfig_Scheduler_Entry::
current_admitted_tuple (TAO_RT_Info_Tuple * t)
{
current_admitted_tuple_ = t;
}
// Accessor for flag indicating whether or not node is enabled.
RtecScheduler::RT_Info_Enabled_Type_t
TAO_Reconfig_Scheduler_Entry::
enabled_state () const
{
return this->enabled_;
}
// Mutator for flag indicating whether or not node is enabled.
void
TAO_Reconfig_Scheduler_Entry::
enabled_state (RtecScheduler::RT_Info_Enabled_Type_t et)
{
this->enabled_ = et;
}
////////////////////////////////////////////
// class TAO_Reconfig_Sched_Strategy_Base //
////////////////////////////////////////////
// Ordering function to compare the DFS finish times of
// two task entries, so qsort orders these in topological
// order, with the higher times *first*
int
TAO_Reconfig_Sched_Strategy_Base::comp_entry_finish_times (const void *first, const void *second)
{
const TAO_Reconfig_Scheduler_Entry *first_entry =
* ACE_reinterpret_cast (const TAO_Reconfig_Scheduler_Entry *const *,
first);
const TAO_Reconfig_Scheduler_Entry *second_entry =
* ACE_reinterpret_cast (const TAO_Reconfig_Scheduler_Entry *const *,
second);
// sort blank entries to the end
if (! first_entry)
{
return (second_entry) ? 1 : 0;
}
else if (! second_entry)
{
return -1;
}
// sort disabled entries to the end
if (first_entry->enabled_state () == RtecScheduler::RT_INFO_DISABLED)
{
return (second_entry->enabled_state () == RtecScheduler::RT_INFO_DISABLED) ? 0 : 1;
}
else if (second_entry->enabled_state () == RtecScheduler::RT_INFO_DISABLED)
{
return -1;
}
// Sort entries with higher forward DFS finishing times before those
// with lower forward DFS finishing times.
if (first_entry->fwd_finished () >
second_entry->fwd_finished ())
{
return -1;
}
else if (first_entry->fwd_finished () <
second_entry->fwd_finished ())
{
return 1;
}
return 0;
}
// Determines whether or not an entry is critical, based on operation characteristics.
// returns 1 if critical, 0 if not
int
TAO_Reconfig_Sched_Strategy_Base::is_critical (TAO_Reconfig_Scheduler_Entry &rse)
{
// Look at the underlying RT_Info's criticality field.
return (rse.actual_rt_info ()->criticality == RtecScheduler::HIGH_CRITICALITY ||
rse.actual_rt_info ()->criticality == RtecScheduler::VERY_HIGH_CRITICALITY)
? 1 : 0;
}
// Determines whether or not a tuple is critical, based on operation
// characteristics. returns 1 if critical, 0 if not
int
TAO_Reconfig_Sched_Strategy_Base::is_critical (TAO_RT_Info_Tuple &t)
{
// Look at the underlying RT_Info's criticality field.
return (t.criticality == RtecScheduler::HIGH_CRITICALITY ||
t.criticality == RtecScheduler::VERY_HIGH_CRITICALITY)
? 1 : 0;
}
// Compares two entries by subpriority alone. Returns -1 if the first
// one is higher, 0 if they're the same, and 1 if the second one is
// higher.
int
TAO_Reconfig_Sched_Strategy_Base::compare_subpriority (TAO_Reconfig_Scheduler_Entry &lhs,
TAO_Reconfig_Scheduler_Entry &rhs)
{
// First, compare importance.
if (lhs.actual_rt_info ()->importance > rhs.actual_rt_info ()->importance)
{
return -1;
}
else if (lhs.actual_rt_info ()->importance < rhs.actual_rt_info ()->importance)
{
return 1;
}
// Same importance, so look at dfs finish time as a tiebreaker.
else if (lhs.fwd_finished () > rhs.fwd_finished ())
{
return -1;
}
else if (lhs.fwd_finished () < rhs.fwd_finished ())
{
return 1;
}
// Same dfs finish time, so look at handle as a tiebreaker.
else if (lhs.actual_rt_info ()->handle > rhs.actual_rt_info ()->handle)
{
return -1;
}
else if (lhs.actual_rt_info ()->handle < rhs.actual_rt_info ()->handle)
{
return 1;
}
// They're the same if we got here.
return 0;
}
////////////////////////////////////////////////
// class TAO_MUF_FAIR_Reconfig_Sched_Strategy //
////////////////////////////////////////////////
// Ordering function used to qsort an array of TAO_RT_Info_Tuple
// pointers into a total <priority, subpriority> ordering. Returns -1
// if the first one is higher, 0 if they're the same, and 1 if the
// second one is higher.
int
TAO_MUF_FAIR_Reconfig_Sched_Strategy::total_priority_comp (const void *s, const void *t)
{
// Convert the passed pointers: the double cast is needed to
// make Sun C++ 4.2 happy.
TAO_Reconfig_Scheduler_Entry **first =
ACE_reinterpret_cast (TAO_Reconfig_Scheduler_Entry **,
ACE_const_cast (void *, s));
TAO_Reconfig_Scheduler_Entry **second =
ACE_reinterpret_cast (TAO_Reconfig_Scheduler_Entry **,
ACE_const_cast (void *, t));
// Check the converted pointers.
if (first == 0 || *first == 0)
{
return (second == 0 || *second == 0) ? 0 : 1;
}
else if (second == 0 || *second == 0)
{
return -1;
}
// sort disabled entries to the end
if ((*first)->enabled_state () == RtecScheduler::RT_INFO_DISABLED)
{
return ((*second)->enabled_state () == RtecScheduler::RT_INFO_DISABLED) ? 0 : 1;
}
else if ((*second)->enabled_state () == RtecScheduler::RT_INFO_DISABLED)
{
return -1;
}
int result =
TAO_MUF_FAIR_Reconfig_Sched_Strategy::compare_priority (**first,
**second);
// Check whether they were distinguished by priority.
if (result == 0)
{
return TAO_Reconfig_Sched_Strategy_Base::compare_subpriority (**first,
**second);
}
else
{
return result;
}
}
// Ordering function used to qsort an array of RT_Info_Tuple
// pointers into a total ordering for admission control. Returns
// -1 if the first one is higher, 0 if they're the same, and 1 if
// the second one is higher.
int
TAO_MUF_FAIR_Reconfig_Sched_Strategy::total_admission_comp (const void *s,
const void *t)
{
// Convert the passed pointers: the double cast is needed to
// make Sun C++ 4.2 happy.
TAO_RT_Info_Tuple **first =
ACE_reinterpret_cast (TAO_RT_Info_Tuple **,
ACE_const_cast (void *, s));
TAO_Reconfig_Scheduler_Entry * first_entry =
ACE_LONGLONG_TO_PTR (TAO_Reconfig_Scheduler_Entry *,
(*first)->volatile_token);
TAO_RT_Info_Tuple **second =
ACE_reinterpret_cast (TAO_RT_Info_Tuple **,
ACE_const_cast (void *, t));
TAO_Reconfig_Scheduler_Entry * second_entry =
ACE_LONGLONG_TO_PTR (TAO_Reconfig_Scheduler_Entry *,
(*second)->volatile_token);
// Check the converted pointers.
if (first == 0 || *first == 0)
{
return (second == 0 || *second == 0) ? 0 : 1;
}
else if (second == 0 || *second == 0)
{
return -1;
}
// sort disabled tuples to the end
if ((*first)->enabled_state () == RtecScheduler::RT_INFO_DISABLED)
{
return ((*second)->enabled_state () == RtecScheduler::RT_INFO_DISABLED) ? 0 : 1;
}
else if ((*second)->enabled_state () == RtecScheduler::RT_INFO_DISABLED)
{
return -1;
}
// First, compare according to rate index.
if ((*first)->rate_index < (*second)->rate_index)
{
return -1;
}
else if ((*second)->rate_index < (*first)->rate_index)
{
return 1;
}
// Then compare by priority.
int result =
TAO_MUF_FAIR_Reconfig_Sched_Strategy::compare_priority (**first, **second);
if (result != 0)
{
return result;
}
// Then compare by subpriority.
result = TAO_Reconfig_Sched_Strategy_Base::compare_subpriority (*first_entry,
*second_entry);
if (result != 0)
{
return result;
}
return 0;
}
// Compares two RT_Info entries by priority alone. Returns -1 if the
// first one is higher, 0 if they're the same, and 1 if the second one is higher.
int
TAO_MUF_FAIR_Reconfig_Sched_Strategy::compare_priority (TAO_Reconfig_Scheduler_Entry &lhs,
TAO_Reconfig_Scheduler_Entry &rhs)
{
// In MUF, priority is per criticality level: compare criticalities.
if (lhs.actual_rt_info ()->criticality >
rhs.actual_rt_info ()->criticality)
{
return -1;
}
else if (lhs.actual_rt_info ()->criticality <
rhs.actual_rt_info ()->criticality)
{
return 1;
}
// They're the same if we got here.
return 0;
}
// Compares two RT_Info tuples by priority alone. Returns -1 if the
// first one is higher, 0 if they're the same, and 1 if the second one is higher.
int
TAO_MUF_FAIR_Reconfig_Sched_Strategy::compare_priority (TAO_RT_Info_Tuple &lhs,
TAO_RT_Info_Tuple &rhs)
{
// In MUF, priority is per criticality level: compare criticalities.
if (lhs.criticality > rhs.criticality)
{
return -1;
}
else if (lhs.criticality < rhs.criticality)
{
return 1;
}
// They're the same if we got here.
return 0;
}
// Fills in a static dispatch configuration for a priority level, based
// on the operation characteristics of a representative scheduling entry.
int
TAO_MUF_FAIR_Reconfig_Sched_Strategy::assign_config (RtecScheduler::Config_Info &info,
TAO_Reconfig_Scheduler_Entry &rse)
{
// Global and thread priority of dispatching queue are simply
// those assigned the representative operation it will dispatch.
info.preemption_priority = rse.actual_rt_info ()->preemption_priority;
info.thread_priority = rse.actual_rt_info ()->priority;
// Dispatching queues are all laxity-based in this strategy.
info.dispatching_type = RtecScheduler::LAXITY_DISPATCHING;
return 0;
}
///////////////////////////////////////////////////
// class TAO_RMS_FAIR_Reconfig_Sched_Strategy //
///////////////////////////////////////////////////
// Ordering function used to qsort an array of TAO_RT_Info_Tuple
// pointers into a total <priority, subpriority> ordering. Returns -1
// if the first one is higher, 0 if they're the same, and 1 if the
// second one is higher.
int
TAO_RMS_FAIR_Reconfig_Sched_Strategy::total_priority_comp (const void *s, const void *t)
{
// Convert the passed pointers: the double cast is needed to
// make Sun C++ 4.2 happy.
TAO_Reconfig_Scheduler_Entry **first =
ACE_reinterpret_cast (TAO_Reconfig_Scheduler_Entry **,
ACE_const_cast (void *, s));
TAO_Reconfig_Scheduler_Entry **second =
ACE_reinterpret_cast (TAO_Reconfig_Scheduler_Entry **,
ACE_const_cast (void *, t));
// Check the converted pointers.
if (first == 0 || *first == 0)
{
return (second == 0 || *second == 0) ? 0 : 1;
}
else if (second == 0 || *second == 0)
{
return -1;
}
// sort disabled entries to the end
if ((*first)->enabled_state () == RtecScheduler::RT_INFO_DISABLED)
{
return ((*second)->enabled_state () == RtecScheduler::RT_INFO_DISABLED) ? 0 : 1;
}
else if ((*second)->enabled_state () == RtecScheduler::RT_INFO_DISABLED)
{
return -1;
}
// Check whether they are distinguished by priority, and if not,
// then by subpriority.
int result =
TAO_RMS_FAIR_Reconfig_Sched_Strategy::compare_priority (**first,
**second);
if (result == 0)
{
return TAO_Reconfig_Sched_Strategy_Base::compare_subpriority (**first,
**second);
}
else
{
return result;
}
}
// Ordering function used to qsort an array of RT_Info_Tuple
// pointers into a total ordering for admission control. Returns
// -1 if the first one is higher, 0 if they're the same, and 1 if
// the second one is higher.
int
TAO_RMS_FAIR_Reconfig_Sched_Strategy::total_admission_comp (const void *s,
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -