📄 sunriseset.c
字号:
rise_min = (int)(rise_frac * 60); set_frac = modf(astr_end+gmtoff_hr ,&set_int); set_hours = (int)set_int; set_min = (int)(set_frac * 60); printf( "Astronomical twilight starts %5.2fh, " "ends %5.2fh UT;\n starts %02d:%02d, ends %02d:%02d local\n", astr_start, astr_end, rise_hours, rise_min, set_hours, set_min ); break; case +1: printf( "Never darker than astronomical twilight\n" ); break; case -1: printf( "Never as bright as astronomical twilight\n" ); break; } return 0; }}/* The "workhorse" function for sun rise/set times */int __sunriset__( int year, int month, int day, double lon, double lat, double altit, int upper_limb, double *trise, double *tset )/***************************************************************************//* Note: year,month,date = calendar date, 1801-2099 only. *//* Eastern longitude positive, Western longitude negative *//* Northern latitude positive, Southern latitude negative *//* The longitude value IS critical in this function! *//* altit = the altitude which the Sun should cross *//* Set to -35/60 degrees for rise/set, -6 degrees *//* for civil, -12 degrees for nautical and -18 *//* degrees for astronomical twilight. *//* upper_limb: non-zero -> upper limb, zero -> center *//* Set to non-zero (e.g. 1) when computing rise/set *//* times, and to zero when computing start/end of *//* twilight. *//* *rise = where to store the rise time *//* *set = where to store the set time *//* Both times are relative to the specified altitude, *//* and thus this function can be used to compute *//* various twilight times, as well as rise/set times *//* Return value: 0 = sun rises/sets this day, times stored at *//* *trise and *tset. *//* +1 = sun above the specified "horizon" 24 hours. *//* *trise set to time when the sun is at south, *//* minus 12 hours while *tset is set to the south *//* time plus 12 hours. "Day" length = 24 hours *//* -1 = sun is below the specified "horizon" 24 hours *//* "Day" length = 0 hours, *trise and *tset are *//* both set to the time when the sun is at south. *//* *//**********************************************************************/{ double d, /* Days since 2000 Jan 0.0 (negative before) */ sr, /* Solar distance, astronomical units */ sRA, /* Sun's Right Ascension */ sdec, /* Sun's declination */ sradius, /* Sun's apparent radius */ t, /* Diurnal arc */ tsouth, /* Time when Sun is at south */ sidtime; /* Local sidereal time */ int rc = 0; /* Return cde from function - usually 0 */ /* Compute d of 12h local mean solar time */ d = days_since_2000_Jan_0(year,month,day) + 0.5 - lon/360.0; /* Compute local sidereal time of this moment */ sidtime = revolution( GMST0(d) + 180.0 + lon ); /* Compute Sun's RA + Decl at this moment */ sun_RA_dec( d, &sRA, &sdec, &sr ); /* Compute time when Sun is at south - in hours UT */ tsouth = 12.0 - rev180(sidtime - sRA)/15.0; /* Compute the Sun's apparent radius, degrees */ sradius = 0.2666 / sr; /* Do correction to upper limb, if necessary */ if ( upper_limb ) altit -= sradius; /* Compute the diurnal arc that the Sun traverses to reach */ /* the specified altitude altit: */ { double cost; cost = ( sind(altit) - sind(lat) * sind(sdec) ) / ( cosd(lat) * cosd(sdec) ); if ( cost >= 1.0 ) rc = -1, t = 0.0; /* Sun always below altit */ else if ( cost <= -1.0 ) rc = +1, t = 12.0; /* Sun always above altit */ else t = acosd(cost)/15.0; /* The diurnal arc, hours */ } /* Store rise and set times - in hours UT */ *trise = tsouth - t; *tset = tsouth + t; return rc;} /* __sunriset__ *//* The "workhorse" function */double __daylen__( int year, int month, int day, double lon, double lat, double altit, int upper_limb )/**********************************************************************//* Note: year,month,date = calendar date, 1801-2099 only. *//* Eastern longitude positive, Western longitude negative *//* Northern latitude positive, Southern latitude negative *//* The longitude value is not critical. Set it to the correct *//* longitude if you're picky, otherwise set to to, say, 0.0 *//* The latitude however IS critical - be sure to get it correct *//* altit = the altitude which the Sun should cross *//* Set to -35/60 degrees for rise/set, -6 degrees *//* for civil, -12 degrees for nautical and -18 *//* degrees for astronomical twilight. *//* upper_limb: non-zero -> upper limb, zero -> center *//* Set to non-zero (e.g. 1) when computing day length *//* and to zero when computing day+twilight length. *//**********************************************************************/{ double d, /* Days since 2000 Jan 0.0 (negative before) */ obl_ecl, /* Obliquity (inclination) of Earth's axis */ sr, /* Solar distance, astronomical units */ slon, /* True solar longitude */ sin_sdecl, /* Sine of Sun's declination */ cos_sdecl, /* Cosine of Sun's declination */ sradius, /* Sun's apparent radius */ t; /* Diurnal arc */ /* Compute d of 12h local mean solar time */ d = days_since_2000_Jan_0(year,month,day) + 0.5 - lon/360.0; /* Compute obliquity of ecliptic (inclination of Earth's axis) */ obl_ecl = 23.4393 - 3.563E-7 * d; /* Compute Sun's position */ sunpos( d, &slon, &sr ); /* Compute sine and cosine of Sun's declination */ sin_sdecl = sind(obl_ecl) * sind(slon); cos_sdecl = sqrt( 1.0 - sin_sdecl * sin_sdecl ); /* Compute the Sun's apparent radius, degrees */ sradius = 0.2666 / sr; /* Do correction to upper limb, if necessary */ if ( upper_limb ) altit -= sradius; /* Compute the diurnal arc that the Sun traverses to reach */ /* the specified altitude altit: */ { double cost; cost = ( sind(altit) - sind(lat) * sin_sdecl ) / ( cosd(lat) * cos_sdecl ); if ( cost >= 1.0 ) t = 0.0; /* Sun always below altit */ else if ( cost <= -1.0 ) t = 24.0; /* Sun always above altit */ else t = (2.0/15.0) * acosd(cost); /* The diurnal arc, hours */ } return t;} /* __daylen__ *//* This function computes the Sun's position at any instant */void sunpos( double d, double *lon, double *r )/******************************************************//* Computes the Sun's ecliptic longitude and distance *//* at an instant given in d, number of days since *//* 2000 Jan 0.0. The Sun's ecliptic latitude is not *//* computed, since it's always very near 0. *//******************************************************/{ double M, /* Mean anomaly of the Sun */ w, /* Mean longitude of perihelion */ /* Note: Sun's mean longitude = M + w */ e, /* Eccentricity of Earth's orbit */ E, /* Eccentric anomaly */ x, y, /* x, y coordinates in orbit */ v; /* True anomaly */ /* Compute mean elements */ M = revolution( 356.0470 + 0.9856002585 * d ); w = 282.9404 + 4.70935E-5 * d; e = 0.016709 - 1.151E-9 * d; /* Compute true longitude and radius vector */ E = M + e * RADEG * sind(M) * ( 1.0 + e * cosd(M) ); x = cosd(E) - e; y = sqrt( 1.0 - e*e ) * sind(E); *r = sqrt( x*x + y*y ); /* Solar distance */ v = atan2d( y, x ); /* True anomaly */ *lon = v + w; /* True solar longitude */ if ( *lon >= 360.0 ) *lon -= 360.0; /* Make it 0..360 degrees */}void sun_RA_dec( double d, double *RA, double *dec, double *r ){ double lon, obl_ecl, x, y, z; /* Compute Sun's ecliptical coordinates */ sunpos( d, &lon, r ); /* Compute ecliptic rectangular coordinates (z=0) */ x = *r * cosd(lon); y = *r * sind(lon); /* Compute obliquity of ecliptic (inclination of Earth's axis) */ obl_ecl = 23.4393 - 3.563E-7 * d; /* Convert to equatorial rectangular coordinates - x is unchanged */ z = y * sind(obl_ecl); y = y * cosd(obl_ecl); /* Convert to spherical coordinates */ *RA = atan2d( y, x ); *dec = atan2d( z, sqrt(x*x + y*y) );} /* sun_RA_dec *//******************************************************************//* This function reduces any angle to within the first revolution *//* by subtracting or adding even multiples of 360.0 until the *//* result is >= 0.0 and < 360.0 *//******************************************************************/#define INV360 ( 1.0 / 360.0 )double revolution( double x )/*****************************************//* Reduce angle to within 0..360 degrees *//*****************************************/{ return( x - 360.0 * floor( x * INV360 ) );} /* revolution */double rev180( double x )/*********************************************//* Reduce angle to within +180..+180 degrees *//*********************************************/{ return( x - 360.0 * floor( x * INV360 + 0.5 ) );} /* revolution *//*******************************************************************//* This function computes GMST0, the Greenwich Mean Sidereal Time *//* at 0h UT (i.e. the sidereal time at the Greenwhich meridian at *//* 0h UT). GMST is then the sidereal time at Greenwich at any *//* time of the day. I've generalized GMST0 as well, and define it *//* as: GMST0 = GMST - UT -- this allows GMST0 to be computed at *//* other times than 0h UT as well. While this sounds somewhat *//* contradictory, it is very practical: instead of computing *//* GMST like: *//* *//* GMST = (GMST0) + UT * (366.2422/365.2422) *//* *//* where (GMST0) is the GMST last time UT was 0 hours, one simply *//* computes: *//* *//* GMST = GMST0 + UT *//* *//* where GMST0 is the GMST "at 0h UT" but at the current moment! *//* Defined in this way, GMST0 will increase with about 4 min a *//* day. It also happens that GMST0 (in degrees, 1 hr = 15 degr) *//* is equal to the Sun's mean longitude plus/minus 180 degrees! *//* (if we neglect aberration, which amounts to 20 seconds of arc *//* or 1.33 seconds of time) *//* *//*******************************************************************/double GMST0( double d ){ double sidtim0; /* Sidtime at 0h UT = L (Sun's mean longitude) + 180.0 degr */ /* L = M + w, as defined in sunpos(). Since I'm too lazy to */ /* add these numbers, I'll let the C compiler do it for me. */ /* Any decent C compiler will add the constants at compile */ /* time, imposing no runtime or code overhead. */ sidtim0 = revolution( ( 180.0 + 356.0470 + 282.9404 ) + ( 0.9856002585 + 4.70935E-5 ) * d ); return sidtim0;} /* GMST0 */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -