⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 changelog-3-4-1

📁 由java开发的软件包
💻
📖 第 1 页 / 共 2 页
字号:
2004-01-14 14:57  eibe	* weka/core/Utils.java (1.38): logs2probs had unintended side	effect.2004-01-14 14:57  eibe	* weka/clusterers/: ClusterEvaluation.java (1.22),	DistributionClusterer.java (1.10), DistributionMetaClusterer.java	(1.8), EM.java (1.23): Logification: things are numerically more	stable now.2004-01-14 12:07  eibe	* weka/clusterers/DistributionClusterer.java (1.9): resurrected2004-01-13 16:44  eibe	* weka/filters/unsupervised/attribute/ClusterMembership.java (1.2):	Some fixes.2004-01-13 15:12  mhall	* weka/gui/GenericObjectEditor.props (1.89): Added	ClusterMembership filter2004-01-13 15:11  mhall	* weka/filters/unsupervised/attribute/ClusterMembership.java (1.1):	Initial import2004-01-12 17:28  mhall	* weka/attributeSelection/OneRAttributeEval.java (1.14): Added	options to control cross validation parameters and to allow the	user to opt for using the training data to evaluate attribute	goodness (rather than x-val). Can now also specify the minimum	bucket size for OneR.2004-01-10 20:39  eibe	* weka/classifiers/meta/MultiClassClassifier.java (1.35): Pairwise	classification works now if two classes are empty.2004-01-09 14:00  mhall	* weka/classifiers/functions/neural/NeuralNetwork.java (1.12):	Fixed so that option click acts as right button on Macs2004-01-09 12:09  eibe	* weka/classifiers/functions/Logistic.java (1.31): Finished model	uses a lot less memory now.2004-01-09 11:17  mhall	* weka/gui/treevisualizer/TreeVisualizer.java (1.7): Fixed so that	option click acts as right button on Macs2004-01-08 16:49  mhall	* weka/clusterers/DistributionMetaClusterer.java (1.7): Now fits	normal and discrete estimators to clusters produced by the wrapped	clusterer2004-01-08 16:47  mhall	* weka/clusterers/DistributionClusterer.java (1.8): Removed from	repository2004-01-08 12:37  mhall	* weka/gui/LogPanel.java (1.14): Fixed so that right click (using	option/alt key) on Macs with one mouse button now works2004-01-06 10:17  eibe	* weka/classifiers/meta/MultiClassClassifier.java (1.34): Changed	random code generation dependend on input data (i.e. seed is now	based on an instance chosen from the input data).2004-01-05 09:17  eibe	* weka/: classifiers/meta/Decorate.java (1.1),	classifiers/misc/FLR.java (1.1), gui/GenericObjectEditor.props	(1.88): Added to classifiers that have been contributed:	Decorate.java and FLR.java2003-12-19 10:48  eibe	* weka/filters/unsupervised/instance/RemoveMisclassified.java	(1.2): Changed RemoveMisclassified to just remove instances from	the first batch. Now it can be used together with the	FilteredClassifier.2003-12-18 11:28  eibe	* weka/: core/Utils.java (1.37),	experiment/RandomSplitResultProducer.java (1.16): Added method for	probabilistic rounding in Utils.java and changed the	RandomSplitResultsProducer to use this method. Previously there was	the potential for slight bias in the class distribution due to	rounding in the stratification phase.2003-12-17 14:15  akibriya	* weka/classifiers/bayes/ComplementNaiveBayes.java (1.2): Fixed a	bug so it can be used without setting any options.2003-12-16 17:26  eibe	* weka/gui/: GUIChooser.java (1.12), ResultHistoryPanel.java	(1.18), explorer/AssociationsPanel.java (1.17),	explorer/AttributeSelectionPanel.java (1.30),	explorer/ClassifierPanel.java (1.70), explorer/ClustererPanel.java	(1.42), explorer/Explorer.java (1.28),	explorer/PreprocessPanel.java (1.37), visualize/AttributePanel.java	(1.9), visualize/ClassPanel.java (1.12), visualize/LegendPanel.java	(1.4), visualize/MatrixPanel.java (1.7), visualize/Plot2D.java	(1.20), visualize/VisualizePanel.java (1.20): Weka Explorer is now	just Explorer.2003-12-16 13:42  eibe	* weka/classifiers/functions/supportVector/SMO.java (1.4): SMO	should be quite a bit faster now: the data wasn't randomized after	it was split into two-class problems (even if the original problem	only had two classes).2003-12-15 09:33  mhall	* weka/attributeSelection/: BestFirst.java (1.23),	CfsSubsetEval.java (1.19): Modified to improve memory usage on data	sets with many features2003-12-12 12:42  eibe	* weka/gui/visualize/Plot2D.java (1.19): Changed access for some	variables from private to protected.2003-12-05 17:41  eibe	* weka/core/Instances.java (1.49): Fixed a bug that I just	introduced with my new code.2003-12-05 16:39  eibe	* weka/: attributeSelection/AttributeSelection.java (1.31),	attributeSelection/OneRAttributeEval.java (1.13),	attributeSelection/RaceSearch.java (1.12),	attributeSelection/WrapperSubsetEval.java (1.21),	classifiers/Evaluation.java (1.49),	classifiers/evaluation/EvaluationUtils.java (1.9),	classifiers/functions/supportVector/SMO.java (1.3),	classifiers/meta/CVParameterSelection.java (1.23),	classifiers/meta/Grading.java (1.3),	classifiers/meta/LogitBoost.java (1.28),	classifiers/meta/MultiScheme.java (1.14),	classifiers/meta/OrdinalClassClassifier.java (1.10),	classifiers/meta/RandomCommittee.java (1.3),	classifiers/meta/Stacking.java (1.18),	classifiers/meta/StackingC.java (1.5),	classifiers/meta/ThresholdSelector.java (1.29),	classifiers/rules/ConjunctiveRule.java (1.9),	classifiers/rules/JRip.java (1.12), classifiers/rules/Ridor.java	(1.9), classifiers/rules/part/MakeDecList.java (1.12),	classifiers/rules/part/PART.java (1.20),	classifiers/trees/REPTree.java (1.15),	classifiers/trees/RandomTree.java (1.6),	classifiers/trees/j48/J48.java (1.28),	classifiers/trees/j48/PruneableClassifierTree.java (1.8),	clusterers/ClusterEvaluation.java (1.21), clusterers/EM.java	(1.22), core/Instances.java (1.48),	experiment/CrossValidationResultProducer.java (1.13),	gui/beans/CrossValidationFoldMaker.java (1.4),	gui/explorer/AttributeSelectionPanel.java (1.29),	gui/explorer/ClassifierPanel.java (1.69): Cross-validation now	randomizes the data within each training fold before it is passed	to the learning scheme. This is important for schemes that are	sensitive to the order in the training data (in particular, those	ones that create a random number generator based on a selected	instance in the training data). Previously we have assumed that the	Classifier itself will randomize the data if necessary. (The same	change applies to various meta-classifiers, etc, as well.)2003-12-05 13:49  eibe	* weka/filters/supervised/attribute/ClassOrder.java (1.3): Re-wrote	large chunks of ClassOrder.2003-12-01 17:10  akibriya	* weka/classifiers/bayes/NaiveBayesMultinomial.java (1.6):	Commented out the factorial terms used in calculating	prob(word|class), as it doesn't make any difference in classifier's	results and is unnecessary.2003-11-28 12:12  eibe	* weka/classifiers/BVDecomposeSegCVSub.java (1.1): Initial import.2003-11-27 17:31  akibriya	* weka/gui/GenericObjectEditor.props (1.87): Added RandomProjection	filter.2003-11-27 17:30  akibriya	* weka/filters/unsupervised/attribute/RandomProjection.java (1.1):	Initial import.2003-11-27 13:43  akibriya	* weka/core/Stopwords.java (1.1): Initial import.2003-11-27 13:39  akibriya	* weka/filters/unsupervised/attribute/StringToWordVector.java	(1.6): Added a range of options to complement the new	ComplementNaiveBayes classifier.2003-11-27 13:35  akibriya	* weka/gui/GenericObjectEditor.props (1.86): Added	ComplementNaiveBayes classifier.2003-11-27 13:34  akibriya	* weka/classifiers/bayes/ComplementNaiveBayes.java (1.1): Initial	import.2003-11-27 12:14  mhall	* weka/classifiers/trees/m5/: Rule.java (1.7), RuleNode.java (1.6):	Fixed a bug relating to minNumInstances2003-11-26 09:54  eibe	* weka/gui/experiment/ResultsPanel.java (1.25): Fixed bug2003-11-24 17:38  eibe	* weka/gui/experiment/ResultsPanel.java (1.24): Introduced a split	panel in the results panel.2003-11-24 09:01  eibe	* weka/gui/explorer/ClassifierPanel.java (1.68): Relative errors	for cross-validation were different from command-line estimates	because calculation of the mean was not done based on each training	fold.2003-11-24 08:57  eibe	* weka/classifiers/trees/j48/C45PruneableClassifierTree.java	(1.11): Fixed bug in J48. Empty leaves didn't get flagged as	non-empty if they became populated after subtree raising had	occurred. This could affect probability estimates for instances	with missing values (in cases where leaves were empty before	pruning, subtree raising actually occurred, and the missing	attribute was tested immediately above the previously empty leaf).2003-11-20 16:38  eibe	* weka/classifiers/trees/j48/: BinC45Split.java (1.8),	C45Split.java (1.8): Made a change that affects probability	estimates for empty leaves.2003-11-20 11:15  eibe	* weka/classifiers/meta/RegressionByDiscretization.java (1.23):	Fixed bug: didn't use to work for datasets with missing class	values2003-11-19 14:03  eibe	* weka/: classifiers/meta/RegressionByDiscretization.java (1.22),	filters/unsupervised/attribute/Discretize.java (1.6): Another small	fix.2003-11-19 11:11  eibe	* weka/filters/: supervised/attribute/Discretize.java (1.3),	unsupervised/attribute/Discretize.java (1.5),	unsupervised/attribute/PotentialClassIgnorer.java (1.2): Fixed a	bug. Also: split points are now put half-way between values in	supervised.attribute.Discretize.2003-11-18 17:45  eibe	* weka/: classifiers/functions/supportVector/SMOreg.java (1.4),	classifiers/meta/RegressionByDiscretization.java (1.21),	filters/Filter.java (1.23),	filters/unsupervised/attribute/Discretize.java (1.4),	filters/unsupervised/attribute/Normalize.java (1.3),	filters/unsupervised/attribute/NumericToBinary.java (1.2),	filters/unsupervised/attribute/PotentialClassIgnorer.java (1.1),	filters/unsupervised/attribute/ReplaceMissingValues.java (1.3),	filters/unsupervised/attribute/Standardize.java (1.3): Made it	possible for some unsupervised attribute filters to ignore class	(or not).2003-11-17 14:08  eibe	* weka/: core/Instances.java (1.47),	filters/supervised/attribute/Discretize.java (1.2),	filters/unsupervised/instance/RemoveWithValues.java (1.4): Removed	numeric padding in tests.2003-11-14 11:10  eibe	* weka/classifiers/meta/AdditiveRegression.java (1.14): Yesterday's	fix wasn't quite the right thing. Fixed it properly (and made it	faster, too :-).2003-11-13 17:31  eibe	* weka/classifiers/meta/AdditiveRegression.java (1.13): Fixed bug	that resulted in reduced performance when shrinkage parameter was	set to value different from 1.2003-11-13 12:03  eibe	* weka/: classifiers/meta/AttributeSelectedClassifier.java (1.14),	classifiers/meta/CVParameterSelection.java (1.22),	classifiers/meta/CostSensitiveClassifier.java (1.17),	classifiers/meta/FilteredClassifier.java (1.19),	classifiers/meta/ThresholdSelector.java (1.28), core/Drawable.java	(1.7): Made a few more meta classifiers implement Drawable.2003-11-12 14:06  mhall	* weka/build.xml (1.11): Updated build file2003-11-12 13:27  eibe	* weka/: Makefile (1.40), associations/Makefile (1.4),	attributeSelection/Makefile (1.16), classifiers/Makefile (1.30),	classifiers/bayes/Makefile (1.8), classifiers/evaluation/Makefile	(1.6), classifiers/functions/Makefile (1.8),	classifiers/functions/neural/Makefile (1.2),	classifiers/functions/pace/Makefile (1.3),	classifiers/functions/supportVector/Makefile (1.2),	classifiers/lazy/Makefile (1.6), classifiers/lazy/kstar/Makefile	(1.4), classifiers/meta/Makefile (1.8), classifiers/misc/Makefile	(1.2), classifiers/rules/Makefile (1.6),	classifiers/rules/part/Makefile (1.2), classifiers/trees/Makefile	(1.6), classifiers/trees/adtree/Makefile (1.2),	classifiers/trees/j48/Makefile (1.4),	classifiers/trees/lmt/Makefile (1.2), classifiers/trees/m5/Makefile	(1.4), clusterers/Makefile (1.6), core/Makefile (1.14),	core/converters/Makefile (1.2), datagenerators/Makefile (1.2),	estimators/Makefile (1.3), experiment/Makefile (1.14),	filters/Makefile (1.27), filters/supervised/Makefile (1.2),	filters/supervised/attribute/Makefile (1.2),	filters/supervised/instance/Makefile (1.2),	filters/unsupervised/Makefile (1.2),	filters/unsupervised/attribute/Makefile (1.6),	filters/unsupervised/instance/Makefile (1.2), gui/Makefile (1.22),	gui/beans/Makefile (1.4), gui/boundaryvisualizer/Makefile (1.3),	gui/experiment/Makefile (1.6), gui/explorer/Makefile (1.7),	gui/graphvisualizer/Makefile (1.2), gui/streams/Makefile (1.3),	gui/treevisualizer/Makefile (1.2), gui/visualize/Makefile (1.6):	Removed all Makefiles because we use ant to compile weka. There is	no point in maintaining them.2003-11-12 11:39  eibe	* weka/classifiers/meta/Bagging.java (1.25): Changed bagging so	that weights are properly taken into account even if out-of-bag	error is calculated.2003-11-12 11:07  eibe	* weka/classifiers/functions/LeastMedSq.java (1.8): Behaviour of	RemoveRange has changed.2003-11-12 11:00  mhall	* weka/gui/beans/FilterBeanInfo.java (1.3): Javadoc fix2003-11-12 10:13  eibe	* weka/classifiers/: meta/CVParameterSelection.java (1.21),	trees/RandomTree.java (1.5): Two tiny changes.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -