⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 priorestimation.html

📁 由java开发的软件包
💻 HTML
📖 第 1 页 / 共 2 页
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"><!--NewPage--><HTML><HEAD><!-- Generated by javadoc (build 1.4.2_05) on Mon Mar 07 15:27:04 NZDT 2005 --><TITLE>PriorEstimation</TITLE><META NAME="keywords" CONTENT="weka.associations.PriorEstimation class"><LINK REL ="stylesheet" TYPE="text/css" HREF="../../stylesheet.css" TITLE="Style"><SCRIPT type="text/javascript">function windowTitle(){    parent.document.title="PriorEstimation";}</SCRIPT></HEAD><BODY BGCOLOR="white" onload="windowTitle();"><!-- ========= START OF TOP NAVBAR ======= --><A NAME="navbar_top"><!-- --></A><A HREF="#skip-navbar_top" title="Skip navigation links"></A><TABLE BORDER="0" WIDTH="100%" CELLPADDING="1" CELLSPACING="0" SUMMARY=""><TR><TD COLSPAN=3 BGCOLOR="#EEEEFF" CLASS="NavBarCell1"><A NAME="navbar_top_firstrow"><!-- --></A><TABLE BORDER="0" CELLPADDING="0" CELLSPACING="3" SUMMARY="">  <TR ALIGN="center" VALIGN="top">  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../overview-summary.html"><FONT CLASS="NavBarFont1"><B>Overview</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="package-summary.html"><FONT CLASS="NavBarFont1"><B>Package</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#FFFFFF" CLASS="NavBarCell1Rev"> &nbsp;<FONT CLASS="NavBarFont1Rev"><B>Class</B></FONT>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="package-tree.html"><FONT CLASS="NavBarFont1"><B>Tree</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../deprecated-list.html"><FONT CLASS="NavBarFont1"><B>Deprecated</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../index-all.html"><FONT CLASS="NavBarFont1"><B>Index</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../../Tutorial.pdf"><FONT CLASS="NavBarFont1"><B>Help</B></FONT></A>&nbsp;</TD> <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1"> <A HREF="http://www.cs.waikato.ac.nz/ml/weka/index.html"><FONT CLASS="NavBarFont1"><B>Weka's home</B></FONT></A>&nbsp;</TD>  </TR></TABLE></TD><TD ALIGN="right" VALIGN="top" ROWSPAN=3><EM></EM></TD></TR><TR><TD BGCOLOR="white" CLASS="NavBarCell2"><FONT SIZE="-2">&nbsp;<A HREF="../../weka/associations/PredictiveApriori.html" title="class in weka.associations"><B>PREV CLASS</B></A>&nbsp;&nbsp;<A HREF="../../weka/associations/RuleGeneration.html" title="class in weka.associations"><B>NEXT CLASS</B></A></FONT></TD><TD BGCOLOR="white" CLASS="NavBarCell2"><FONT SIZE="-2">  <A HREF="../../index.html" target="_top"><B>FRAMES</B></A>  &nbsp;&nbsp;<A HREF="PriorEstimation.html" target="_top"><B>NO FRAMES</B></A>  &nbsp;&nbsp;<SCRIPT type="text/javascript">  <!--  if(window==top) {    document.writeln('<A HREF="../../allclasses-noframe.html"><B>All Classes</B></A>');  }  //--></SCRIPT><NOSCRIPT>  <A HREF="../../allclasses-noframe.html"><B>All Classes</B></A></NOSCRIPT></FONT></TD></TR><TR><TD VALIGN="top" CLASS="NavBarCell3"><FONT SIZE="-2">  SUMMARY:&nbsp;NESTED&nbsp;|&nbsp;FIELD&nbsp;|&nbsp;<A HREF="#constructor_summary">CONSTR</A>&nbsp;|&nbsp;<A HREF="#method_summary">METHOD</A></FONT></TD><TD VALIGN="top" CLASS="NavBarCell3"><FONT SIZE="-2">DETAIL:&nbsp;FIELD&nbsp;|&nbsp;<A HREF="#constructor_detail">CONSTR</A>&nbsp;|&nbsp;<A HREF="#method_detail">METHOD</A></FONT></TD></TR></TABLE><A NAME="skip-navbar_top"></A><!-- ========= END OF TOP NAVBAR ========= --><HR><!-- ======== START OF CLASS DATA ======== --><H2><FONT SIZE="-1">weka.associations</FONT><BR>Class PriorEstimation</H2><PRE>java.lang.Object  <IMG SRC="../../resources/inherit.gif" ALT="extended by"><B>weka.associations.PriorEstimation</B></PRE><DL><DT><B>All Implemented Interfaces:</B> <DD>java.io.Serializable</DD></DL><HR><DL><DT>public class <B>PriorEstimation</B><DT>extends java.lang.Object<DT>implements java.io.Serializable</DL><P>Class implementing the prior estimattion of the predictive apriori algorithm  for mining association rules.  Reference: T. Scheffer (2001). <i>Finding Association Rules That Trade Support  Optimally against Confidence</i>. Proc of the 5th European Conf. on Principles and Practice of Knowledge Discovery in Databases (PKDD'01), pp. 424-435. Freiburg, Germany: Springer-Verlag. <p><P><P><DL><DT><B>Version:</B></DT>  <DD>$Revision: 1.4 $</DD><DT><B>Author:</B></DT>  <DD>Stefan Mutter (mutter@cs.waikato.ac.nz)</DD><DT><B>See Also:</B><DD><A HREF="../../serialized-form.html#weka.associations.PriorEstimation">Serialized Form</A></DL><HR><P><!-- ======== NESTED CLASS SUMMARY ======== --><!-- =========== FIELD SUMMARY =========== --><!-- ======== CONSTRUCTOR SUMMARY ======== --><A NAME="constructor_summary"><!-- --></A><TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY=""><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=2><FONT SIZE="+2"><B>Constructor Summary</B></FONT></TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD><CODE><B><A HREF="../../weka/associations/PriorEstimation.html#PriorEstimation(weka.core.Instances, int, int, boolean)">PriorEstimation</A></B>(<A HREF="../../weka/core/Instances.html" title="class in weka.core">Instances</A>&nbsp;instances,                int&nbsp;numRules,                int&nbsp;numIntervals,                boolean&nbsp;car)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Constructor</TD></TR></TABLE>&nbsp;<!-- ========== METHOD SUMMARY =========== --><A NAME="method_summary"><!-- --></A><TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY=""><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=2><FONT SIZE="+2"><B>Method Summary</B></FONT></TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;<A HREF="../../weka/associations/RuleItem.html" title="class in weka.associations">RuleItem</A></CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/associations/PriorEstimation.html#addCons(int[])">addCons</A></B>(int[]&nbsp;itemArray)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;generates a class association rule out of a given premise.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/associations/PriorEstimation.html#buildDistribution(double, double)">buildDistribution</A></B>(double&nbsp;conf,                  double&nbsp;length)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;updates the distribution of the confidence values.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/associations/PriorEstimation.html#calculatePriorSum(boolean, double)">calculatePriorSum</A></B>(boolean&nbsp;weighted,                  double&nbsp;mPoint)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;calculates the numerator and the denominator of the prior equation</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;java.util.Hashtable</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/associations/PriorEstimation.html#estimatePrior()">estimatePrior</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Method to estimate the prior probabilities</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/associations/PriorEstimation.html#findIntervall(double)">findIntervall</A></B>(double&nbsp;conf)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;searches the mid point of the interval a given confidence value falls into</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/associations/PriorEstimation.html#generateDistribution()">generateDistribution</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Calculates the prior distribution.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double[]</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/associations/PriorEstimation.html#getMidPoints()">getMidPoints</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;returns an ordered array of all mid points</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>static&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/associations/PriorEstimation.html#logbinomialCoefficient(int, int)">logbinomialCoefficient</A></B>(int&nbsp;upperIndex,                       int&nbsp;lowerIndex)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Method that calculates the base 2 logarithm of a binomial coefficient</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/associations/PriorEstimation.html#midPoint(double, int)">midPoint</A></B>(double&nbsp;size,         int&nbsp;number)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;calculates the mid point of an interval</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/associations/PriorEstimation.html#midPoints()">midPoints</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;split the interval [0,1] into a predefined number of intervals and calculates their mid points</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;int[]</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/associations/PriorEstimation.html#randomCARule(int, int, java.util.Random)">randomCARule</A></B>(int&nbsp;maxLength,             int&nbsp;actualLength,             java.util.Random&nbsp;randNum)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Constructs an item set of certain length randomly.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;int[]</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/associations/PriorEstimation.html#randomRule(int, int, java.util.Random)">randomRule</A></B>(int&nbsp;maxLength,           int&nbsp;actualLength,           java.util.Random&nbsp;randNum)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Constructs an item set of certain length randomly.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;<A HREF="../../weka/associations/RuleItem.html" title="class in weka.associations">RuleItem</A></CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/associations/PriorEstimation.html#splitItemSet(int, int[])">splitItemSet</A></B>(int&nbsp;premiseLength,             int[]&nbsp;itemArray)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;splits an item set into premise and consequence and constructs therefore an association rule.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/associations/PriorEstimation.html#updateCounters(weka.associations.ItemSet)">updateCounters</A></B>(<A HREF="../../weka/associations/ItemSet.html" title="class in weka.associations">ItemSet</A>&nbsp;itemSet)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;updates the support count of an item set</TD></TR></TABLE>&nbsp;<A NAME="methods_inherited_from_class_java.lang.Object"><!-- --></A><TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY=""><TR BGCOLOR="#EEEEFF" CLASS="TableSubHeadingColor"><TD><B>Methods inherited from class java.lang.Object</B></TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD><CODE>equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait</CODE></TD></TR></TABLE>&nbsp;<P><!-- ============ FIELD DETAIL =========== --><!-- ========= CONSTRUCTOR DETAIL ======== --><A NAME="constructor_detail"><!-- --></A><TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY=""><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=1><FONT SIZE="+2"><B>Constructor Detail</B></FONT></TD></TR></TABLE><A NAME="PriorEstimation(weka.core.Instances, int, int, boolean)"><!-- --></A><H3>PriorEstimation</H3><PRE>public <B>PriorEstimation</B>(<A HREF="../../weka/core/Instances.html" title="class in weka.core">Instances</A>&nbsp;instances,                       int&nbsp;numRules,                       int&nbsp;numIntervals,                       boolean&nbsp;car)</PRE><DL><DD>Constructor<P><DT><B>Parameters:</B><DD><CODE>instances</CODE> - the instances to be used for generating the associations<DD><CODE>numRules</CODE> - the number of random rules used for generating the prior<DD><CODE>numIntervals</CODE> - the number of intervals to discretise [0,1]<DD><CODE>car</CODE> - flag indicating whether standard or class association rules are mined</DL><!-- ============ METHOD DETAIL ========== --><A NAME="method_detail"><!-- --></A><TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY=""><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=1><FONT SIZE="+2"><B>Method Detail</B></FONT></TD></TR></TABLE>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -