📄 evaluation.html
字号:
<PRE>public final double <B>numInstances</B>()</PRE><DL><DD>Gets the number of test instances that had a known class value (actually the sum of the weights of test instances with known class value).<P><DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>the number of test instances with known class</DL></DD></DL><HR><A NAME="incorrect()"><!-- --></A><H3>incorrect</H3><PRE>public final double <B>incorrect</B>()</PRE><DL><DD>Gets the number of instances incorrectly classified (that is, for which an incorrect prediction was made). (Actually the sum of the weights of these instances)<P><DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>the number of incorrectly classified instances</DL></DD></DL><HR><A NAME="pctIncorrect()"><!-- --></A><H3>pctIncorrect</H3><PRE>public final double <B>pctIncorrect</B>()</PRE><DL><DD>Gets the percentage of instances incorrectly classified (that is, for which an incorrect prediction was made).<P><DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>the percent of incorrectly classified instances (between 0 and 100)</DL></DD></DL><HR><A NAME="totalCost()"><!-- --></A><H3>totalCost</H3><PRE>public final double <B>totalCost</B>()</PRE><DL><DD>Gets the total cost, that is, the cost of each prediction times the weight of the instance, summed over all instances.<P><DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>the total cost</DL></DD></DL><HR><A NAME="avgCost()"><!-- --></A><H3>avgCost</H3><PRE>public final double <B>avgCost</B>()</PRE><DL><DD>Gets the average cost, that is, total cost of misclassifications (incorrect plus unclassified) over the total number of instances.<P><DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>the average cost.</DL></DD></DL><HR><A NAME="correct()"><!-- --></A><H3>correct</H3><PRE>public final double <B>correct</B>()</PRE><DL><DD>Gets the number of instances correctly classified (that is, for which a correct prediction was made). (Actually the sum of the weights of these instances)<P><DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>the number of correctly classified instances</DL></DD></DL><HR><A NAME="pctCorrect()"><!-- --></A><H3>pctCorrect</H3><PRE>public final double <B>pctCorrect</B>()</PRE><DL><DD>Gets the percentage of instances correctly classified (that is, for which a correct prediction was made).<P><DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>the percent of correctly classified instances (between 0 and 100)</DL></DD></DL><HR><A NAME="unclassified()"><!-- --></A><H3>unclassified</H3><PRE>public final double <B>unclassified</B>()</PRE><DL><DD>Gets the number of instances not classified (that is, for which no prediction was made by the classifier). (Actually the sum of the weights of these instances)<P><DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>the number of unclassified instances</DL></DD></DL><HR><A NAME="pctUnclassified()"><!-- --></A><H3>pctUnclassified</H3><PRE>public final double <B>pctUnclassified</B>()</PRE><DL><DD>Gets the percentage of instances not classified (that is, for which no prediction was made by the classifier).<P><DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>the percent of unclassified instances (between 0 and 100)</DL></DD></DL><HR><A NAME="errorRate()"><!-- --></A><H3>errorRate</H3><PRE>public final double <B>errorRate</B>()</PRE><DL><DD>Returns the estimated error rate or the root mean squared error (if the class is numeric). If a cost matrix was given this error rate gives the average cost.<P><DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>the estimated error rate (between 0 and 1, or between 0 and maximum cost)</DL></DD></DL><HR><A NAME="kappa()"><!-- --></A><H3>kappa</H3><PRE>public final double <B>kappa</B>()</PRE><DL><DD>Returns value of kappa statistic if class is nominal.<P><DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>the value of the kappa statistic</DL></DD></DL><HR><A NAME="correlationCoefficient()"><!-- --></A><H3>correlationCoefficient</H3><PRE>public final double <B>correlationCoefficient</B>() throws java.lang.Exception</PRE><DL><DD>Returns the correlation coefficient if the class is numeric.<P><DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>the correlation coefficient<DT><B>Throws:</B><DD><CODE>java.lang.Exception</CODE> - if class is not numeric</DL></DD></DL><HR><A NAME="meanAbsoluteError()"><!-- --></A><H3>meanAbsoluteError</H3><PRE>public final double <B>meanAbsoluteError</B>()</PRE><DL><DD>Returns the mean absolute error. Refers to the error of the predicted values for numeric classes, and the error of the predicted probability distribution for nominal classes.<P><DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>the mean absolute error</DL></DD></DL><HR><A NAME="meanPriorAbsoluteError()"><!-- --></A><H3>meanPriorAbsoluteError</H3><PRE>public final double <B>meanPriorAbsoluteError</B>()</PRE><DL><DD>Returns the mean absolute error of the prior.<P><DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>the mean absolute error</DL></DD></DL><HR><A NAME="relativeAbsoluteError()"><!-- --></A><H3>relativeAbsoluteError</H3><PRE>public final double <B>relativeAbsoluteError</B>() throws java.lang.Exception</PRE><DL><DD>Returns the relative absolute error.<P><DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>the relative absolute error<DT><B>Throws:</B><DD><CODE>java.lang.Exception</CODE> - if it can't be computed</DL></DD></DL><HR><A NAME="rootMeanSquaredError()"><!-- --></A><H3>rootMeanSquaredError</H3><PRE>public final double <B>rootMeanSquaredError</B>()</PRE><DL><DD>Returns the root mean squared error.<P><DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>the root mean squared error</DL></DD></DL><HR><A NAME="rootMeanPriorSquaredError()"><!-- --></A><H3>rootMeanPriorSquaredError</H3><PRE>public final double <B>rootMeanPriorSquaredError</B>()</PRE><DL><DD>Returns the root mean prior squared error.<P><DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>the root mean prior squared error</DL></DD></DL><HR><A NAME="rootRelativeSquaredError()"><!-- --></A><H3>rootRelativeSquaredError</H3><PRE>public final double <B>rootRelativeSquaredError</B>()</PRE><DL><DD>Returns the root relative squared error if the class is numeric.<P><DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>the root relative squared error</DL></DD></DL><HR><A NAME="priorEntropy()"><!-- --></A><H3>priorEntropy</H3><PRE>public final double <B>priorEntropy</B>() throws java.lang.Exception</PRE><DL><DD>Calculate the entropy of the prior distribution<P><DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>the entropy of the prior distribution<DT><B>Throws:</B><DD><CODE>java.lang.Exception</CODE> - if the class is not nominal</DL></DD></DL><HR><A NAME="KBInformation()"><!-- --></A><H3>KBInformation</H3><PRE>public final double <B>KBInformation</B>() throws java.lang.Exception</PRE><DL><DD>Return the total Kononenko & Bratko Information score in bits<P><DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>the K&B information score<DT><B>Throws:</B><DD><CODE>java.lang.Exception</CODE> - if the class is not nominal</DL></DD></DL><HR><A NAME="KBMeanInformation()"><!-- --></A><H3>KBMeanInformation</H3><PRE>public final double <B>KBMeanInformation</B>() throws java.lang.Exception</PRE><DL><DD>Return the Kononenko & Bratko Information score in bits per instance.<P><DD><DL>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -