⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 normalmixture.html

📁 由java开发的软件包
💻 HTML
📖 第 1 页 / 共 3 页
字号:
<TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>static&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../../../weka/classifiers/functions/pace/NormalMixture.html#main(java.lang.String[])">main</A></B>(java.lang.String[]&nbsp;args)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Method to test this class</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;<A HREF="../../../../weka/classifiers/functions/pace/DoubleVector.html" title="class in weka.classifiers.functions.pace">DoubleVector</A></CODE></FONT></TD><TD><CODE><B><A HREF="../../../../weka/classifiers/functions/pace/NormalMixture.html#nestedEstimate(weka.classifiers.functions.pace.DoubleVector)">nestedEstimate</A></B>(<A HREF="../../../../weka/classifiers/functions/pace/DoubleVector.html" title="class in weka.classifiers.functions.pace">DoubleVector</A>&nbsp;x)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns the optimal nested model estimate of a vector.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;<A HREF="../../../../weka/classifiers/functions/pace/PaceMatrix.html" title="class in weka.classifiers.functions.pace">PaceMatrix</A></CODE></FONT></TD><TD><CODE><B><A HREF="../../../../weka/classifiers/functions/pace/NormalMixture.html#probabilityMatrix(weka.classifiers.functions.pace.DoubleVector, weka.classifiers.functions.pace.PaceMatrix)">probabilityMatrix</A></B>(<A HREF="../../../../weka/classifiers/functions/pace/DoubleVector.html" title="class in weka.classifiers.functions.pace">DoubleVector</A>&nbsp;s,                  <A HREF="../../../../weka/classifiers/functions/pace/PaceMatrix.html" title="class in weka.classifiers.functions.pace">PaceMatrix</A>&nbsp;intervals)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Contructs the probability matrix for mixture estimation, given a set  of support points and a set of intervals.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;boolean</CODE></FONT></TD><TD><CODE><B><A HREF="../../../../weka/classifiers/functions/pace/NormalMixture.html#separable(weka.classifiers.functions.pace.DoubleVector, int, int, double)">separable</A></B>(<A HREF="../../../../weka/classifiers/functions/pace/DoubleVector.html" title="class in weka.classifiers.functions.pace">DoubleVector</A>&nbsp;data,          int&nbsp;i0,          int&nbsp;i1,          double&nbsp;x)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Return true if a value can be considered for mixture estimatino  separately from the data indexed between i0 and i1</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../../../weka/classifiers/functions/pace/NormalMixture.html#setSeparatingThreshold(double)">setSeparatingThreshold</A></B>(double&nbsp;t)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Sets the separating threshold value</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../../../weka/classifiers/functions/pace/NormalMixture.html#setTrimingThreshold(double)">setTrimingThreshold</A></B>(double&nbsp;t)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Sets the triming thresholding value.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;<A HREF="../../../../weka/classifiers/functions/pace/DoubleVector.html" title="class in weka.classifiers.functions.pace">DoubleVector</A></CODE></FONT></TD><TD><CODE><B><A HREF="../../../../weka/classifiers/functions/pace/NormalMixture.html#subsetEstimate(weka.classifiers.functions.pace.DoubleVector)">subsetEstimate</A></B>(<A HREF="../../../../weka/classifiers/functions/pace/DoubleVector.html" title="class in weka.classifiers.functions.pace">DoubleVector</A>&nbsp;x)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns the estimate of optimal subset selection.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;<A HREF="../../../../weka/classifiers/functions/pace/DoubleVector.html" title="class in weka.classifiers.functions.pace">DoubleVector</A></CODE></FONT></TD><TD><CODE><B><A HREF="../../../../weka/classifiers/functions/pace/NormalMixture.html#supportPoints(weka.classifiers.functions.pace.DoubleVector, int)">supportPoints</A></B>(<A HREF="../../../../weka/classifiers/functions/pace/DoubleVector.html" title="class in weka.classifiers.functions.pace">DoubleVector</A>&nbsp;data,              int&nbsp;ne)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Contructs the set of support points for mixture estimation.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;java.lang.String</CODE></FONT></TD><TD><CODE><B><A HREF="../../../../weka/classifiers/functions/pace/NormalMixture.html#toString()">toString</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Converts to a string</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../../../weka/classifiers/functions/pace/NormalMixture.html#trim(weka.classifiers.functions.pace.DoubleVector)">trim</A></B>(<A HREF="../../../../weka/classifiers/functions/pace/DoubleVector.html" title="class in weka.classifiers.functions.pace">DoubleVector</A>&nbsp;x)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Trims the small values of the estaimte</TD></TR></TABLE>&nbsp;<A NAME="methods_inherited_from_class_weka.classifiers.functions.pace.MixtureDistribution"><!-- --></A><TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY=""><TR BGCOLOR="#EEEEFF" CLASS="TableSubHeadingColor"><TD><B>Methods inherited from class weka.classifiers.functions.pace.<A HREF="../../../../weka/classifiers/functions/pace/MixtureDistribution.html" title="class in weka.classifiers.functions.pace">MixtureDistribution</A></B></TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD><CODE><A HREF="../../../../weka/classifiers/functions/pace/MixtureDistribution.html#empiricalProbability(weka.classifiers.functions.pace.DoubleVector, weka.classifiers.functions.pace.PaceMatrix)">empiricalProbability</A>, <A HREF="../../../../weka/classifiers/functions/pace/MixtureDistribution.html#fit(weka.classifiers.functions.pace.DoubleVector)">fit</A>, <A HREF="../../../../weka/classifiers/functions/pace/MixtureDistribution.html#fit(weka.classifiers.functions.pace.DoubleVector, int)">fit</A>, <A HREF="../../../../weka/classifiers/functions/pace/MixtureDistribution.html#fitForSingleCluster(weka.classifiers.functions.pace.DoubleVector, int)">fitForSingleCluster</A>, <A HREF="../../../../weka/classifiers/functions/pace/MixtureDistribution.html#getMixingDistribution()">getMixingDistribution</A>, <A HREF="../../../../weka/classifiers/functions/pace/MixtureDistribution.html#setMixingDistribution(weka.classifiers.functions.pace.DiscreteFunction)">setMixingDistribution</A></CODE></TD></TR></TABLE>&nbsp;<A NAME="methods_inherited_from_class_java.lang.Object"><!-- --></A><TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY=""><TR BGCOLOR="#EEEEFF" CLASS="TableSubHeadingColor"><TD><B>Methods inherited from class java.lang.Object</B></TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD><CODE>equals, getClass, hashCode, notify, notifyAll, wait, wait, wait</CODE></TD></TR></TABLE>&nbsp;<P><!-- ============ FIELD DETAIL =========== --><!-- ========= CONSTRUCTOR DETAIL ======== --><A NAME="constructor_detail"><!-- --></A><TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY=""><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=1><FONT SIZE="+2"><B>Constructor Detail</B></FONT></TD></TR></TABLE><A NAME="NormalMixture()"><!-- --></A><H3>NormalMixture</H3><PRE>public <B>NormalMixture</B>()</PRE><DL><DD>Contructs an empty NormalMixture<P></DL><!-- ============ METHOD DETAIL ========== --><A NAME="method_detail"><!-- --></A><TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY=""><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=1><FONT SIZE="+2"><B>Method Detail</B></FONT></TD></TR></TABLE><A NAME="getSeparatingThreshold()"><!-- --></A><H3>getSeparatingThreshold</H3><PRE>public double <B>getSeparatingThreshold</B>()</PRE><DL><DD>Gets the separating threshold value. This value is used by the method   separatable<P><DD><DL></DL></DD></DL><HR><A NAME="setSeparatingThreshold(double)"><!-- --></A><H3>setSeparatingThreshold</H3><PRE>public void <B>setSeparatingThreshold</B>(double&nbsp;t)</PRE><DL><DD>Sets the separating threshold value<P><DD><DL><DT><B>Parameters:</B><DD><CODE>t</CODE> - the threshold value</DL></DD></DL><HR><A NAME="getTrimingThreshold()"><!-- --></A><H3>getTrimingThreshold</H3><PRE>public double <B>getTrimingThreshold</B>()</PRE><DL><DD>Gets the triming thresholding value. This value is usef by the      method trim.<P><DD><DL></DL></DD></DL><HR><A NAME="setTrimingThreshold(double)"><!-- --></A><H3>setTrimingThreshold</H3><PRE>public void <B>setTrimingThreshold</B>(double&nbsp;t)</PRE><DL><DD>Sets the triming thresholding value.<P><DD><DL></DL></DD></DL><HR><A NAME="separable(weka.classifiers.functions.pace.DoubleVector, int, int, double)"><!-- --></A><H3>separable</H3><PRE>public boolean <B>separable</B>(<A HREF="../../../../weka/classifiers/functions/pace/DoubleVector.html" title="class in weka.classifiers.functions.pace">DoubleVector</A>&nbsp;data,                         int&nbsp;i0,                         int&nbsp;i1,                         double&nbsp;x)</PRE><DL><DD>Return true if a value can be considered for mixture estimatino  separately from the data indexed between i0 and i1<P><DD><DL><DT><B>Specified by:</B><DD><CODE><A HREF="../../../../weka/classifiers/functions/pace/MixtureDistribution.html#separable(weka.classifiers.functions.pace.DoubleVector, int, int, double)">separable</A></CODE> in class <CODE><A HREF="../../../../weka/classifiers/functions/pace/MixtureDistribution.html" title="class in weka.classifiers.functions.pace">MixtureDistribution</A></CODE></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>data</CODE> - the data supposedly generated from the mixture<DD><CODE>i0</CODE> - the index of the first element in the group<DD><CODE>i1</CODE> - the index of the last element in the group<DD><CODE>x</CODE> - the value</DL></DD></DL><HR><A NAME="supportPoints(weka.classifiers.functions.pace.DoubleVector, int)"><!-- --></A><H3>supportPoints</H3><PRE>public <A HREF="../../../../weka/classifiers/functions/pace/DoubleVector.html" title="class in weka.classifiers.functions.pace">DoubleVector</A> <B>supportPoints</B>(<A HREF="../../../../weka/classifiers/functions/pace/DoubleVector.html" title="class in weka.classifiers.functions.pace">DoubleVector</A>&nbsp;data,                                  int&nbsp;ne)</PRE><DL><DD>Contructs the set of support points for mixture estimation.<P><DD><DL><DT><B>Specified by:</B><DD><CODE><A HREF="../../../../weka/classifiers/functions/pace/MixtureDistribution.html#supportPoints(weka.classifiers.functions.pace.DoubleVector, int)">supportPoints</A></CODE> in class <CODE><A HREF="../../../../weka/classifiers/functions/pace/MixtureDistribution.html" title="class in weka.classifiers.functions.pace">MixtureDistribution</A></CODE></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>data</CODE> - the data supposedly generated from the mixture<DD><CODE>ne</CODE> - the number of extra data that are suppposedly discarded  earlier and not passed into here</DL></DD></DL><HR><A NAME="fittingIntervals(weka.classifiers.functions.pace.DoubleVector)"><!-- --></A><H3>fittingIntervals</H3><PRE>public <A HREF="../../../../weka/classifiers/functions/pace/PaceMatrix.html" title="class in weka.classifiers.functions.pace">PaceMatrix</A> <B>fittingIntervals</B>(<A HREF="../../../../weka/classifiers/functions/pace/DoubleVector.html" title="class in weka.classifiers.functions.pace">DoubleVector</A>&nbsp;data)</PRE><DL><DD>Contructs the set of fitting intervals for mixture estimation.<P><DD><DL><DT><B>Specified by:</B><DD><CODE><A HREF="../../../../weka/classifiers/functions/pace/MixtureDistribution.html#fittingIntervals(weka.classifiers.functions.pace.DoubleVector)">fittingIntervals</A></CODE> in class <CODE><A HREF="../../../../weka/classifiers/functions/pace/MixtureDistribution.html" title="class in weka.classifiers.functions.pace">MixtureDistribution</A></CODE></DL></DD><DD><DL>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -