⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mpegvideo_altivec.c

📁 Trolltech公司发布的图形界面操作系统。可在qt-embedded-2.3.10平台上编译为嵌入式图形界面操作系统。
💻 C
📖 第 1 页 / 共 2 页
字号:
/* * Copyright (c) 2002 Dieter Shirley * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA */#include <stdlib.h>#include <stdio.h>#include "../dsputil.h"#include "../mpegvideo.h"#include "gcc_fixes.h" #include "dsputil_altivec.h"// Swaps two variables (used for altivec registers)#define SWAP(a,b) \do { \    __typeof__(a) swap_temp=a; \    a=b; \    b=swap_temp; \} while (0)// transposes a matrix consisting of four vectors with four elements each#define TRANSPOSE4(a,b,c,d) \do { \  __typeof__(a) _trans_ach = vec_mergeh(a, c); \  __typeof__(a) _trans_acl = vec_mergel(a, c); \  __typeof__(a) _trans_bdh = vec_mergeh(b, d); \  __typeof__(a) _trans_bdl = vec_mergel(b, d); \ \  a = vec_mergeh(_trans_ach, _trans_bdh); \  b = vec_mergel(_trans_ach, _trans_bdh); \  c = vec_mergeh(_trans_acl, _trans_bdl); \  d = vec_mergel(_trans_acl, _trans_bdl); \} while (0)#define TRANSPOSE8(a,b,c,d,e,f,g,h) \do { \    __typeof__(a)  _A1, _B1, _C1, _D1, _E1, _F1, _G1, _H1; \    __typeof__(a)  _A2, _B2, _C2, _D2, _E2, _F2, _G2, _H2; \ \    _A1 = vec_mergeh (a, e); \    _B1 = vec_mergel (a, e); \    _C1 = vec_mergeh (b, f); \    _D1 = vec_mergel (b, f); \    _E1 = vec_mergeh (c, g); \    _F1 = vec_mergel (c, g); \    _G1 = vec_mergeh (d, h); \    _H1 = vec_mergel (d, h); \ \    _A2 = vec_mergeh (_A1, _E1); \    _B2 = vec_mergel (_A1, _E1); \    _C2 = vec_mergeh (_B1, _F1); \    _D2 = vec_mergel (_B1, _F1); \    _E2 = vec_mergeh (_C1, _G1); \    _F2 = vec_mergel (_C1, _G1); \    _G2 = vec_mergeh (_D1, _H1); \    _H2 = vec_mergel (_D1, _H1); \ \    a = vec_mergeh (_A2, _E2); \    b = vec_mergel (_A2, _E2); \    c = vec_mergeh (_B2, _F2); \    d = vec_mergel (_B2, _F2); \    e = vec_mergeh (_C2, _G2); \    f = vec_mergel (_C2, _G2); \    g = vec_mergeh (_D2, _H2); \    h = vec_mergel (_D2, _H2); \} while (0)// Loads a four-byte value (int or float) from the target address// into every element in the target vector.  Only works if the// target address is four-byte aligned (which should be always).#define LOAD4(vec, address) \{ \    __typeof__(vec)* _load_addr = (__typeof__(vec)*)(address); \    vector unsigned char _perm_vec = vec_lvsl(0,(address)); \    vec = vec_ld(0, _load_addr); \    vec = vec_perm(vec, vec, _perm_vec); \    vec = vec_splat(vec, 0); \}#ifdef CONFIG_DARWIN#define FOUROF(a) (a)#else// slower, for dumb non-apple GCC#define FOUROF(a) {a,a,a,a}#endifint dct_quantize_altivec(MpegEncContext* s,                         DCTELEM* data, int n,                        int qscale, int* overflow){    int lastNonZero;    vector float row0, row1, row2, row3, row4, row5, row6, row7;    vector float alt0, alt1, alt2, alt3, alt4, alt5, alt6, alt7;    const vector float zero = (const vector float)FOUROF(0.);    // Load the data into the row/alt vectors    {        vector signed short data0, data1, data2, data3, data4, data5, data6, data7;        data0 = vec_ld(0, data);        data1 = vec_ld(16, data);        data2 = vec_ld(32, data);        data3 = vec_ld(48, data);        data4 = vec_ld(64, data);        data5 = vec_ld(80, data);        data6 = vec_ld(96, data);        data7 = vec_ld(112, data);        // Transpose the data before we start        TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);        // load the data into floating point vectors.  We load        // the high half of each row into the main row vectors        // and the low half into the alt vectors.        row0 = vec_ctf(vec_unpackh(data0), 0);        alt0 = vec_ctf(vec_unpackl(data0), 0);        row1 = vec_ctf(vec_unpackh(data1), 0);        alt1 = vec_ctf(vec_unpackl(data1), 0);        row2 = vec_ctf(vec_unpackh(data2), 0);        alt2 = vec_ctf(vec_unpackl(data2), 0);        row3 = vec_ctf(vec_unpackh(data3), 0);        alt3 = vec_ctf(vec_unpackl(data3), 0);        row4 = vec_ctf(vec_unpackh(data4), 0);        alt4 = vec_ctf(vec_unpackl(data4), 0);        row5 = vec_ctf(vec_unpackh(data5), 0);        alt5 = vec_ctf(vec_unpackl(data5), 0);        row6 = vec_ctf(vec_unpackh(data6), 0);        alt6 = vec_ctf(vec_unpackl(data6), 0);        row7 = vec_ctf(vec_unpackh(data7), 0);        alt7 = vec_ctf(vec_unpackl(data7), 0);    }    // The following block could exist as a separate an altivec dct		// function.  However, if we put it inline, the DCT data can remain		// in the vector local variables, as floats, which we'll use during the		// quantize step...    {        const vector float vec_0_298631336 = (vector float)FOUROF(0.298631336f);        const vector float vec_0_390180644 = (vector float)FOUROF(-0.390180644f);        const vector float vec_0_541196100 = (vector float)FOUROF(0.541196100f);        const vector float vec_0_765366865 = (vector float)FOUROF(0.765366865f);        const vector float vec_0_899976223 = (vector float)FOUROF(-0.899976223f);        const vector float vec_1_175875602 = (vector float)FOUROF(1.175875602f);        const vector float vec_1_501321110 = (vector float)FOUROF(1.501321110f);        const vector float vec_1_847759065 = (vector float)FOUROF(-1.847759065f);        const vector float vec_1_961570560 = (vector float)FOUROF(-1.961570560f);        const vector float vec_2_053119869 = (vector float)FOUROF(2.053119869f);        const vector float vec_2_562915447 = (vector float)FOUROF(-2.562915447f);        const vector float vec_3_072711026 = (vector float)FOUROF(3.072711026f);        int whichPass, whichHalf;        for(whichPass = 1; whichPass<=2; whichPass++)        {            for(whichHalf = 1; whichHalf<=2; whichHalf++)            {                vector float tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;                vector float tmp10, tmp11, tmp12, tmp13;                vector float z1, z2, z3, z4, z5;                tmp0 = vec_add(row0, row7); // tmp0 = dataptr[0] + dataptr[7];                tmp7 = vec_sub(row0, row7); // tmp7 = dataptr[0] - dataptr[7];                tmp3 = vec_add(row3, row4); // tmp3 = dataptr[3] + dataptr[4];                tmp4 = vec_sub(row3, row4); // tmp4 = dataptr[3] - dataptr[4];                tmp1 = vec_add(row1, row6); // tmp1 = dataptr[1] + dataptr[6];                tmp6 = vec_sub(row1, row6); // tmp6 = dataptr[1] - dataptr[6];                tmp2 = vec_add(row2, row5); // tmp2 = dataptr[2] + dataptr[5];                tmp5 = vec_sub(row2, row5); // tmp5 = dataptr[2] - dataptr[5];                tmp10 = vec_add(tmp0, tmp3); // tmp10 = tmp0 + tmp3;                tmp13 = vec_sub(tmp0, tmp3); // tmp13 = tmp0 - tmp3;                tmp11 = vec_add(tmp1, tmp2); // tmp11 = tmp1 + tmp2;                tmp12 = vec_sub(tmp1, tmp2); // tmp12 = tmp1 - tmp2;                // dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);                row0 = vec_add(tmp10, tmp11);                // dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);                row4 = vec_sub(tmp10, tmp11);                // z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);                z1 = vec_madd(vec_add(tmp12, tmp13), vec_0_541196100, (vector float)zero);                // dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),                //		   CONST_BITS-PASS1_BITS);                row2 = vec_madd(tmp13, vec_0_765366865, z1);                // dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),                //		   CONST_BITS-PASS1_BITS);                row6 = vec_madd(tmp12, vec_1_847759065, z1);                z1 = vec_add(tmp4, tmp7); // z1 = tmp4 + tmp7;                z2 = vec_add(tmp5, tmp6); // z2 = tmp5 + tmp6;                z3 = vec_add(tmp4, tmp6); // z3 = tmp4 + tmp6;                z4 = vec_add(tmp5, tmp7); // z4 = tmp5 + tmp7;                // z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */                z5 = vec_madd(vec_add(z3, z4), vec_1_175875602, (vector float)zero);                // z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */                z3 = vec_madd(z3, vec_1_961570560, z5);                // z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */                z4 = vec_madd(z4, vec_0_390180644, z5);                // The following adds are rolled into the multiplies above                // z3 = vec_add(z3, z5);  // z3 += z5;                // z4 = vec_add(z4, z5);  // z4 += z5;                // z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */                // Wow!  It's actually more effecient to roll this multiply                // into the adds below, even thought the multiply gets done twice!                // z2 = vec_madd(z2, vec_2_562915447, (vector float)zero);                // z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */                // Same with this one...                // z1 = vec_madd(z1, vec_0_899976223, (vector float)zero);                // tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */                // dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);                row7 = vec_madd(tmp4, vec_0_298631336, vec_madd(z1, vec_0_899976223, z3));                // tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */                // dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);                row5 = vec_madd(tmp5, vec_2_053119869, vec_madd(z2, vec_2_562915447, z4));                // tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */                // dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);                row3 = vec_madd(tmp6, vec_3_072711026, vec_madd(z2, vec_2_562915447, z3));                // tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */                // dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);                row1 = vec_madd(z1, vec_0_899976223, vec_madd(tmp7, vec_1_501321110, z4));                // Swap the row values with the alts.  If this is the first half,                // this sets up the low values to be acted on in the second half.                // If this is the second half, it puts the high values back in                // the row values where they are expected to be when we're done.                SWAP(row0, alt0);                SWAP(row1, alt1);                SWAP(row2, alt2);                SWAP(row3, alt3);                SWAP(row4, alt4);                SWAP(row5, alt5);                SWAP(row6, alt6);                SWAP(row7, alt7);            }            if (whichPass == 1)            {                // transpose the data for the second pass                                 // First, block transpose the upper right with lower left.                SWAP(row4, alt0);                SWAP(row5, alt1);                SWAP(row6, alt2);                SWAP(row7, alt3);                // Now, transpose each block of four                TRANSPOSE4(row0, row1, row2, row3);                TRANSPOSE4(row4, row5, row6, row7);                TRANSPOSE4(alt0, alt1, alt2, alt3);                TRANSPOSE4(alt4, alt5, alt6, alt7);            }        }    }    // used after quantise step    int oldBaseValue = 0;    // perform the quantise step, using the floating point data    // still in the row/alt registers    {        const int* biasAddr;        const vector signed int* qmat;        vector float bias, negBias;        if (s->mb_intra)        {            vector signed int baseVector;            // We must cache element 0 in the intra case            // (it needs special handling).            baseVector = vec_cts(vec_splat(row0, 0), 0);            vec_ste(baseVector, 0, &oldBaseValue);            qmat = (vector signed int*)s->q_intra_matrix[qscale];            biasAddr = &(s->intra_quant_bias);        }        else        {            qmat = (vector signed int*)s->q_inter_matrix[qscale];            biasAddr = &(s->inter_quant_bias);        }        // Load the bias vector (We add 0.5 to the bias so that we're				// rounding when we convert to int, instead of flooring.)        {            vector signed int biasInt;            const vector float negOneFloat = (vector float)FOUROF(-1.0f);            LOAD4(biasInt, biasAddr);            bias = vec_ctf(biasInt, QUANT_BIAS_SHIFT);            negBias = vec_madd(bias, negOneFloat, zero);        }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -