⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 adpcm.c

📁 Trolltech公司发布的图形界面操作系统。可在qt-embedded-2.3.10平台上编译为嵌入式图形界面操作系统。
💻 C
📖 第 1 页 / 共 2 页
字号:
        shift  = 12 - (in[5+i*2] & 15);        filter = in[5+i*2] >> 4;        f0 = xa_adpcm_table[filter][0];        f1 = xa_adpcm_table[filter][1];        for(j=0;j<28;j++) {            d = in[16+i+j*4];            t = (signed char)d >> 4;            s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);            CLAMP_TO_SHORT(s);            *out = s;            out += inc;            s_2 = s_1;            s_1 = s;        }        if (inc==2) { /* stereo */            right->sample1 = s_1;            right->sample2 = s_2;            out -= 1;        } else {            left->sample1 = s_1;            left->sample2 = s_2;        }    }}/* DK3 ADPCM support macro */#define DK3_GET_NEXT_NIBBLE() \    if (decode_top_nibble_next) \    { \        nibble = (last_byte >> 4) & 0x0F; \        decode_top_nibble_next = 0; \    } \    else \    { \        last_byte = *src++; \        if (src >= buf + buf_size) break; \        nibble = last_byte & 0x0F; \        decode_top_nibble_next = 1; \    }static int adpcm_decode_frame(AVCodecContext *avctx,			    void *data, int *data_size,			    uint8_t *buf, int buf_size){    ADPCMContext *c = avctx->priv_data;    ADPCMChannelStatus *cs;    int n, m, channel, i;    int block_predictor[2];    short *samples;    uint8_t *src;    int st; /* stereo */    /* DK3 ADPCM accounting variables */    unsigned char last_byte = 0;    unsigned char nibble;    int decode_top_nibble_next = 0;    int diff_channel;    samples = data;    src = buf;    st = avctx->channels == 2;    switch(avctx->codec->id) {    case CODEC_ID_ADPCM_IMA_QT:        n = (buf_size - 2);/* >> 2*avctx->channels;*/        channel = c->channel;        cs = &(c->status[channel]);        /* (pppppp) (piiiiiii) */        /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */        cs->predictor = (*src++) << 8;        cs->predictor |= (*src & 0x80);        cs->predictor &= 0xFF80;        /* sign extension */        if(cs->predictor & 0x8000)            cs->predictor -= 0x10000;        CLAMP_TO_SHORT(cs->predictor);        cs->step_index = (*src++) & 0x7F;        if (cs->step_index > 88) av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);        if (cs->step_index > 88) cs->step_index = 88;        cs->step = step_table[cs->step_index];        if (st && channel)            samples++;        *samples++ = cs->predictor;        samples += st;        for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */            *samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F);            samples += avctx->channels;            *samples = adpcm_ima_expand_nibble(cs, (src[0] >> 4) & 0x0F);            samples += avctx->channels;            src ++;        }        if(st) { /* handle stereo interlacing */            c->channel = (channel + 1) % 2; /* we get one packet for left, then one for right data */            if(channel == 0) { /* wait for the other packet before outputing anything */                *data_size = 0;                return src - buf;            }        }        break;    case CODEC_ID_ADPCM_IMA_WAV:        if (avctx->block_align != 0 && buf_size > avctx->block_align)            buf_size = avctx->block_align;	// XXX: do as per-channel loop        cs = &(c->status[0]);        cs->predictor = (*src++) & 0x0FF;        cs->predictor |= ((*src++) << 8) & 0x0FF00;        if(cs->predictor & 0x8000)            cs->predictor -= 0x10000;        CLAMP_TO_SHORT(cs->predictor);	// XXX: is this correct ??: *samples++ = cs->predictor;	cs->step_index = *src++;        if (cs->step_index < 0) cs->step_index = 0;        if (cs->step_index > 88) cs->step_index = 88;        if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null !!\n"); /* unused */        if (st) {            cs = &(c->status[1]);            cs->predictor = (*src++) & 0x0FF;            cs->predictor |= ((*src++) << 8) & 0x0FF00;            if(cs->predictor & 0x8000)                cs->predictor -= 0x10000;            CLAMP_TO_SHORT(cs->predictor);	    // XXX: is this correct ??: *samples++ = cs->predictor;	    cs->step_index = *src++;            if (cs->step_index < 0) cs->step_index = 0;            if (cs->step_index > 88) cs->step_index = 88;            src++; /* if != 0  -> out-of-sync */        }        for(m=4; src < (buf + buf_size);) {	    *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] & 0x0F);            if (st)                *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[4] & 0x0F);            *samples++ = adpcm_ima_expand_nibble(&c->status[0], (src[0] >> 4) & 0x0F);	    if (st) {                *samples++ = adpcm_ima_expand_nibble(&c->status[1], (src[4] >> 4) & 0x0F);		if (!--m) {		    m=4;		    src+=4;		}	    }	    src++;	}        break;    case CODEC_ID_ADPCM_4XM:        cs = &(c->status[0]);        c->status[0].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;        if(st){            c->status[1].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;        }        c->status[0].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;        if(st){            c->status[1].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;        }//            if (cs->step_index < 0) cs->step_index = 0;//            if (cs->step_index > 88) cs->step_index = 88;        m= (buf_size - (src - buf))>>st;//printf("%d %d %d %d\n", st, m, c->status[0].predictor, c->status[0].step_index);        //FIXME / XXX decode chanels individual & interleave samples        for(i=0; i<m; i++) {	    *samples++ = adpcm_4xa_expand_nibble(&c->status[0], src[i] & 0x0F);            if (st)                *samples++ = adpcm_4xa_expand_nibble(&c->status[1], src[i+m] & 0x0F);            *samples++ = adpcm_4xa_expand_nibble(&c->status[0], src[i] >> 4);	    if (st)                *samples++ = adpcm_4xa_expand_nibble(&c->status[1], src[i+m] >> 4);	}        src += m<<st;        break;    case CODEC_ID_ADPCM_MS:        if (avctx->block_align != 0 && buf_size > avctx->block_align)            buf_size = avctx->block_align;        n = buf_size - 7 * avctx->channels;        if (n < 0)            return -1;        block_predictor[0] = (*src++); /* should be bound */        block_predictor[0] = (block_predictor[0] < 0)?(0):((block_predictor[0] > 7)?(7):(block_predictor[0]));        block_predictor[1] = 0;        if (st)            block_predictor[1] = (*src++);        block_predictor[1] = (block_predictor[1] < 0)?(0):((block_predictor[1] > 7)?(7):(block_predictor[1]));        c->status[0].idelta = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));        if (c->status[0].idelta & 0x08000)            c->status[0].idelta -= 0x10000;        src+=2;        if (st)            c->status[1].idelta = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));        if (st && c->status[1].idelta & 0x08000)            c->status[1].idelta |= 0xFFFF0000;        if (st)            src+=2;        c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]];        c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]];        c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]];        c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]];                c->status[0].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));        src+=2;        if (st) c->status[1].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));        if (st) src+=2;        c->status[0].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));        src+=2;        if (st) c->status[1].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));        if (st) src+=2;        *samples++ = c->status[0].sample1;        if (st) *samples++ = c->status[1].sample1;        *samples++ = c->status[0].sample2;        if (st) *samples++ = c->status[1].sample2;        for(;n>0;n--) {            *samples++ = adpcm_ms_expand_nibble(&c->status[0], (src[0] >> 4) & 0x0F);            *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);            src ++;        }        break;    case CODEC_ID_ADPCM_IMA_DK4:        if (avctx->block_align != 0 && buf_size > avctx->block_align)            buf_size = avctx->block_align;        c->status[0].predictor = (src[0] | (src[1] << 8));        c->status[0].step_index = src[2];        src += 4;        if(c->status[0].predictor & 0x8000)            c->status[0].predictor -= 0x10000;        *samples++ = c->status[0].predictor;        if (st) {            c->status[1].predictor = (src[0] | (src[1] << 8));            c->status[1].step_index = src[2];            src += 4;            if(c->status[1].predictor & 0x8000)                c->status[1].predictor -= 0x10000;            *samples++ = c->status[1].predictor;        }        while (src < buf + buf_size) {            /* take care of the top nibble (always left or mono channel) */            *samples++ = adpcm_ima_expand_nibble(&c->status[0],                 (src[0] >> 4) & 0x0F);            /* take care of the bottom nibble, which is right sample for             * stereo, or another mono sample */            if (st)                *samples++ = adpcm_ima_expand_nibble(&c->status[1],                     src[0] & 0x0F);            else                *samples++ = adpcm_ima_expand_nibble(&c->status[0],                     src[0] & 0x0F);            src++;        }        break;    case CODEC_ID_ADPCM_IMA_DK3:        if (avctx->block_align != 0 && buf_size > avctx->block_align)            buf_size = avctx->block_align;        c->status[0].predictor = (src[10] | (src[11] << 8));        c->status[1].predictor = (src[12] | (src[13] << 8));        c->status[0].step_index = src[14];        c->status[1].step_index = src[15];        /* sign extend the predictors */        if(c->status[0].predictor & 0x8000)            c->status[0].predictor -= 0x10000;        if(c->status[1].predictor & 0x8000)            c->status[1].predictor -= 0x10000;        src += 16;        diff_channel = c->status[1].predictor;        /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when         * the buffer is consumed */        while (1) {            /* for this algorithm, c->status[0] is the sum channel and             * c->status[1] is the diff channel */            /* process the first predictor of the sum channel */            DK3_GET_NEXT_NIBBLE();            adpcm_ima_expand_nibble(&c->status[0], nibble);            /* process the diff channel predictor */            DK3_GET_NEXT_NIBBLE();            adpcm_ima_expand_nibble(&c->status[1], nibble);            /* process the first pair of stereo PCM samples */            diff_channel = (diff_channel + c->status[1].predictor) / 2;            *samples++ = c->status[0].predictor + c->status[1].predictor;            *samples++ = c->status[0].predictor - c->status[1].predictor;            /* process the second predictor of the sum channel */            DK3_GET_NEXT_NIBBLE();            adpcm_ima_expand_nibble(&c->status[0], nibble);            /* process the second pair of stereo PCM samples */            diff_channel = (diff_channel + c->status[1].predictor) / 2;            *samples++ = c->status[0].predictor + c->status[1].predictor;            *samples++ = c->status[0].predictor - c->status[1].predictor;        }        break;    case CODEC_ID_ADPCM_IMA_WS:        /* no per-block initialization; just start decoding the data */        while (src < buf + buf_size) {            if (st) {                *samples++ = adpcm_ima_expand_nibble(&c->status[0],                     (src[0] >> 4) & 0x0F);                *samples++ = adpcm_ima_expand_nibble(&c->status[1],                     src[0] & 0x0F);            } else {                *samples++ = adpcm_ima_expand_nibble(&c->status[0],                     (src[0] >> 4) & 0x0F);                *samples++ = adpcm_ima_expand_nibble(&c->status[0],                     src[0] & 0x0F);            }            src++;        }        break;    case CODEC_ID_ADPCM_XA:        c->status[0].sample1 = c->status[0].sample2 =         c->status[1].sample1 = c->status[1].sample2 = 0;        while (buf_size >= 128) {            xa_decode(samples, src, &c->status[0], &c->status[1],                 avctx->channels);            src += 128;            samples += 28 * 8;            buf_size -= 128;        }        break;    default:        *data_size = 0;        return -1;    }    *data_size = (uint8_t *)samples - (uint8_t *)data;    return src - buf;}#ifdef CONFIG_ENCODERS#define ADPCM_ENCODER(id,name)                  \AVCodec name ## _encoder = {                    \    #name,                                      \    CODEC_TYPE_AUDIO,                           \    id,                                         \    sizeof(ADPCMContext),                       \    adpcm_encode_init,                          \    adpcm_encode_frame,                         \    adpcm_encode_close,                         \    NULL,                                       \};#else#define ADPCM_ENCODER(id,name)#endif#ifdef CONFIG_DECODERS#define ADPCM_DECODER(id,name)                  \AVCodec name ## _decoder = {                    \    #name,                                      \    CODEC_TYPE_AUDIO,                           \    id,                                         \    sizeof(ADPCMContext),                       \    adpcm_decode_init,                          \    NULL,                                       \    NULL,                                       \    adpcm_decode_frame,                         \};#else#define ADPCM_DECODER(id,name)#endif#define ADPCM_CODEC(id, name)                   \ADPCM_ENCODER(id,name) ADPCM_DECODER(id,name)ADPCM_CODEC(CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt);ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav);ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3);ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4);ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws);ADPCM_CODEC(CODEC_ID_ADPCM_MS, adpcm_ms);ADPCM_CODEC(CODEC_ID_ADPCM_4XM, adpcm_4xm);ADPCM_CODEC(CODEC_ID_ADPCM_XA, adpcm_xa);ADPCM_CODEC(CODEC_ID_ADPCM_ADX, adpcm_adx);#undef ADPCM_CODEC

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -