⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ac3enc.c

📁 Trolltech公司发布的图形界面操作系统。可在qt-embedded-2.3.10平台上编译为嵌入式图形界面操作系统。
💻 C
📖 第 1 页 / 共 3 页
字号:
/* * The simplest AC3 encoder * Copyright (c) 2000 Fabrice Bellard. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA *//** * @file ac3enc.c * The simplest AC3 encoder. *///#define DEBUG//#define DEBUG_BITALLOC#include "avcodec.h"#include "ac3.h"typedef struct AC3EncodeContext {    PutBitContext pb;    int nb_channels;    int nb_all_channels;    int lfe_channel;    int bit_rate;    unsigned int sample_rate;    unsigned int bsid;    unsigned int frame_size_min; /* minimum frame size in case rounding is necessary */    unsigned int frame_size; /* current frame size in words */    int halfratecod;    unsigned int frmsizecod;    unsigned int fscod; /* frequency */    unsigned int acmod;    int lfe;    unsigned int bsmod;    short last_samples[AC3_MAX_CHANNELS][256];    unsigned int chbwcod[AC3_MAX_CHANNELS];    int nb_coefs[AC3_MAX_CHANNELS];        /* bitrate allocation control */    int sgaincod, sdecaycod, fdecaycod, dbkneecod, floorcod;     AC3BitAllocParameters bit_alloc;    int csnroffst;    int fgaincod[AC3_MAX_CHANNELS];    int fsnroffst[AC3_MAX_CHANNELS];    /* mantissa encoding */    int mant1_cnt, mant2_cnt, mant4_cnt;} AC3EncodeContext;#include "ac3tab.h"#define MDCT_NBITS 9#define N         (1 << MDCT_NBITS)/* new exponents are sent if their Norm 1 exceed this number */#define EXP_DIFF_THRESHOLD 1000static void fft_init(int ln);static void ac3_crc_init(void);static inline int16_t fix15(float a){    int v;    v = (int)(a * (float)(1 << 15));    if (v < -32767)        v = -32767;    else if (v > 32767)         v = 32767;    return v;}static inline int calc_lowcomp1(int a, int b0, int b1){    if ((b0 + 256) == b1) {        a = 384 ;    } else if (b0 > b1) {         a = a - 64;        if (a < 0) a=0;    }    return a;}static inline int calc_lowcomp(int a, int b0, int b1, int bin){    if (bin < 7) {        if ((b0 + 256) == b1) {            a = 384 ;        } else if (b0 > b1) {             a = a - 64;            if (a < 0) a=0;        }    } else if (bin < 20) {        if ((b0 + 256) == b1) {            a = 320 ;        } else if (b0 > b1) {            a= a - 64;            if (a < 0) a=0;        }    } else {        a = a - 128;        if (a < 0) a=0;    }    return a;}/* AC3 bit allocation. The algorithm is the one described in the AC3   spec. */void ac3_parametric_bit_allocation(AC3BitAllocParameters *s, uint8_t *bap,                                   int8_t *exp, int start, int end,                                   int snroffset, int fgain, int is_lfe,                                   int deltbae,int deltnseg,                                    uint8_t *deltoffst, uint8_t *deltlen, uint8_t *deltba){    int bin,i,j,k,end1,v,v1,bndstrt,bndend,lowcomp,begin;    int fastleak,slowleak,address,tmp;    int16_t psd[256]; /* scaled exponents */    int16_t bndpsd[50]; /* interpolated exponents */    int16_t excite[50]; /* excitation */    int16_t mask[50];   /* masking value */    /* exponent mapping to PSD */    for(bin=start;bin<end;bin++) {        psd[bin]=(3072 - (exp[bin] << 7));    }    /* PSD integration */    j=start;    k=masktab[start];    do {        v=psd[j];        j++;        end1=bndtab[k+1];        if (end1 > end) end1=end;        for(i=j;i<end1;i++) {            int c,adr;            /* logadd */            v1=psd[j];            c=v-v1;            if (c >= 0) {                adr=c >> 1;                if (adr > 255) adr=255;                v=v + latab[adr];            } else {                adr=(-c) >> 1;                if (adr > 255) adr=255;                v=v1 + latab[adr];            }            j++;        }        bndpsd[k]=v;        k++;    } while (end > bndtab[k]);    /* excitation function */    bndstrt = masktab[start];    bndend = masktab[end-1] + 1;        if (bndstrt == 0) {        lowcomp = 0;        lowcomp = calc_lowcomp1(lowcomp, bndpsd[0], bndpsd[1]) ;        excite[0] = bndpsd[0] - fgain - lowcomp ;        lowcomp = calc_lowcomp1(lowcomp, bndpsd[1], bndpsd[2]) ;        excite[1] = bndpsd[1] - fgain - lowcomp ;        begin = 7 ;        for (bin = 2; bin < 7; bin++) {            if (!(is_lfe && bin == 6))                lowcomp = calc_lowcomp1(lowcomp, bndpsd[bin], bndpsd[bin+1]) ;            fastleak = bndpsd[bin] - fgain ;            slowleak = bndpsd[bin] - s->sgain ;            excite[bin] = fastleak - lowcomp ;            if (!(is_lfe && bin == 6)) {                if (bndpsd[bin] <= bndpsd[bin+1]) {                    begin = bin + 1 ;                    break ;                }            }        }            end1=bndend;        if (end1 > 22) end1=22;            for (bin = begin; bin < end1; bin++) {            if (!(is_lfe && bin == 6))                lowcomp = calc_lowcomp(lowcomp, bndpsd[bin], bndpsd[bin+1], bin) ;                    fastleak -= s->fdecay ;            v = bndpsd[bin] - fgain;            if (fastleak < v) fastleak = v;                    slowleak -= s->sdecay ;            v = bndpsd[bin] - s->sgain;            if (slowleak < v) slowleak = v;                    v=fastleak - lowcomp;            if (slowleak > v) v=slowleak;                    excite[bin] = v;        }        begin = 22;    } else {        /* coupling channel */        begin = bndstrt;                fastleak = (s->cplfleak << 8) + 768;        slowleak = (s->cplsleak << 8) + 768;    }    for (bin = begin; bin < bndend; bin++) {        fastleak -= s->fdecay ;        v = bndpsd[bin] - fgain;        if (fastleak < v) fastleak = v;        slowleak -= s->sdecay ;        v = bndpsd[bin] - s->sgain;        if (slowleak < v) slowleak = v;        v=fastleak;        if (slowleak > v) v = slowleak;        excite[bin] = v;    }    /* compute masking curve */    for (bin = bndstrt; bin < bndend; bin++) {        v1 = excite[bin];        tmp = s->dbknee - bndpsd[bin];        if (tmp > 0) {            v1 += tmp >> 2;        }        v=hth[bin >> s->halfratecod][s->fscod];        if (v1 > v) v=v1;        mask[bin] = v;    }    /* delta bit allocation */    if (deltbae == 0 || deltbae == 1) {        int band, seg, delta;        band = 0 ;        for (seg = 0; seg < deltnseg; seg++) {            band += deltoffst[seg] ;            if (deltba[seg] >= 4) {                delta = (deltba[seg] - 3) << 7;            } else {                delta = (deltba[seg] - 4) << 7;            }            for (k = 0; k < deltlen[seg]; k++) {                mask[band] += delta ;                band++ ;            }        }    }    /* compute bit allocation */        i = start ;    j = masktab[start] ;    do {        v=mask[j];        v -= snroffset ;        v -= s->floor ;        if (v < 0) v = 0;        v &= 0x1fe0 ;        v += s->floor ;        end1=bndtab[j] + bndsz[j];        if (end1 > end) end1=end;        for (k = i; k < end1; k++) {            address = (psd[i] - v) >> 5 ;            if (address < 0) address=0;            else if (address > 63) address=63;            bap[i] = baptab[address];            i++;        }    } while (end > bndtab[j++]) ;}typedef struct IComplex {    short re,im;} IComplex;static void fft_init(int ln){    int i, j, m, n;    float alpha;    n = 1 << ln;    for(i=0;i<(n/2);i++) {        alpha = 2 * M_PI * (float)i / (float)n;        costab[i] = fix15(cos(alpha));        sintab[i] = fix15(sin(alpha));    }    for(i=0;i<n;i++) {        m=0;        for(j=0;j<ln;j++) {            m |= ((i >> j) & 1) << (ln-j-1);        }        fft_rev[i]=m;    }}/* butter fly op */#define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \{\  int ax, ay, bx, by;\  bx=pre1;\  by=pim1;\  ax=qre1;\  ay=qim1;\  pre = (bx + ax) >> 1;\  pim = (by + ay) >> 1;\  qre = (bx - ax) >> 1;\  qim = (by - ay) >> 1;\}#define MUL16(a,b) ((a) * (b))#define CMUL(pre, pim, are, aim, bre, bim) \{\   pre = (MUL16(are, bre) - MUL16(aim, bim)) >> 15;\   pim = (MUL16(are, bim) + MUL16(bre, aim)) >> 15;\}/* do a 2^n point complex fft on 2^ln points. */static void fft(IComplex *z, int ln){    int	j, l, np, np2;    int	nblocks, nloops;    register IComplex *p,*q;    int tmp_re, tmp_im;    np = 1 << ln;    /* reverse */    for(j=0;j<np;j++) {        int k;        IComplex tmp;        k = fft_rev[j];        if (k < j) {            tmp = z[k];            z[k] = z[j];            z[j] = tmp;        }    }    /* pass 0 */    p=&z[0];    j=(np >> 1);    do {        BF(p[0].re, p[0].im, p[1].re, p[1].im,            p[0].re, p[0].im, p[1].re, p[1].im);        p+=2;    } while (--j != 0);    /* pass 1 */    p=&z[0];    j=np >> 2;    do {        BF(p[0].re, p[0].im, p[2].re, p[2].im,            p[0].re, p[0].im, p[2].re, p[2].im);        BF(p[1].re, p[1].im, p[3].re, p[3].im,            p[1].re, p[1].im, p[3].im, -p[3].re);        p+=4;    } while (--j != 0);    /* pass 2 .. ln-1 */    nblocks = np >> 3;    nloops = 1 << 2;    np2 = np >> 1;    do {        p = z;        q = z + nloops;        for (j = 0; j < nblocks; ++j) {            BF(p->re, p->im, q->re, q->im,               p->re, p->im, q->re, q->im);                        p++;            q++;            for(l = nblocks; l < np2; l += nblocks) {                CMUL(tmp_re, tmp_im, costab[l], -sintab[l], q->re, q->im);                BF(p->re, p->im, q->re, q->im,                   p->re, p->im, tmp_re, tmp_im);                p++;                q++;            }            p += nloops;            q += nloops;        }        nblocks = nblocks >> 1;        nloops = nloops << 1;    } while (nblocks != 0);}/* do a 512 point mdct */static void mdct512(int32_t *out, int16_t *in){    int i, re, im, re1, im1;    int16_t rot[N];     IComplex x[N/4];    /* shift to simplify computations */    for(i=0;i<N/4;i++)        rot[i] = -in[i + 3*N/4];    for(i=N/4;i<N;i++)        rot[i] = in[i - N/4];            /* pre rotation */    for(i=0;i<N/4;i++) {        re = ((int)rot[2*i] - (int)rot[N-1-2*i]) >> 1;        im = -((int)rot[N/2+2*i] - (int)rot[N/2-1-2*i]) >> 1;        CMUL(x[i].re, x[i].im, re, im, -xcos1[i], xsin1[i]);    }    fft(x, MDCT_NBITS - 2);      /* post rotation */    for(i=0;i<N/4;i++) {        re = x[i].re;        im = x[i].im;        CMUL(re1, im1, re, im, xsin1[i], xcos1[i]);        out[2*i] = im1;        out[N/2-1-2*i] = re1;    }}/* XXX: use another norm ? */static int calc_exp_diff(uint8_t *exp1, uint8_t *exp2, int n){    int sum, i;    sum = 0;    for(i=0;i<n;i++) {        sum += abs(exp1[i] - exp2[i]);    }    return sum;}static void compute_exp_strategy(uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],                                 uint8_t exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],                                 int ch, int is_lfe){    int i, j;    int exp_diff;        /* estimate if the exponent variation & decide if they should be       reused in the next frame */    exp_strategy[0][ch] = EXP_NEW;    for(i=1;i<NB_BLOCKS;i++) {        exp_diff = calc_exp_diff(exp[i][ch], exp[i-1][ch], N/2);#ifdef DEBUG                    av_log(NULL, AV_LOG_DEBUG, "exp_diff=%d\n", exp_diff);#endif        if (exp_diff > EXP_DIFF_THRESHOLD)            exp_strategy[i][ch] = EXP_NEW;        else            exp_strategy[i][ch] = EXP_REUSE;    }    if (is_lfe)	return;    /* now select the encoding strategy type : if exponents are often       recoded, we use a coarse encoding */    i = 0;    while (i < NB_BLOCKS) {        j = i + 1;        while (j < NB_BLOCKS && exp_strategy[j][ch] == EXP_REUSE)            j++;        switch(j - i) {        case 1:            exp_strategy[i][ch] = EXP_D45;            break;        case 2:        case 3:            exp_strategy[i][ch] = EXP_D25;            break;        default:            exp_strategy[i][ch] = EXP_D15;            break;        }	i = j;    }}/* set exp[i] to min(exp[i], exp1[i]) */static void exponent_min(uint8_t exp[N/2], uint8_t exp1[N/2], int n){    int i;    for(i=0;i<n;i++) {        if (exp1[i] < exp[i])            exp[i] = exp1[i];    }}                                 /* update the exponents so that they are the ones the decoder will   decode. Return the number of bits used to code the exponents */static int encode_exp(uint8_t encoded_exp[N/2],                       uint8_t exp[N/2],                       int nb_exps,                      int exp_strategy){    int group_size, nb_groups, i, j, k, recurse, exp_min, delta;    uint8_t exp1[N/2];    switch(exp_strategy) {    case EXP_D15:        group_size = 1;        break;    case EXP_D25:        group_size = 2;        break;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -