⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 svq3.c

📁 Trolltech公司发布的图形界面操作系统。可在qt-embedded-2.3.10平台上编译为嵌入式图形界面操作系统。
💻 C
📖 第 1 页 / 共 2 页
字号:
/* * Copyright (c) 2003 The FFmpeg Project. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * * * How to use this decoder: * SVQ3 data is transported within Apple Quicktime files. Quicktime files * have stsd atoms to describe media trak properties. A stsd atom for a * video trak contains 1 or more ImageDescription atoms. These atoms begin * with the 4-byte length of the atom followed by the codec fourcc. Some * decoders need information in this atom to operate correctly. Such * is the case with SVQ3. In order to get the best use out of this decoder, * the calling app must make the SVQ3 ImageDescription atom available * via the AVCodecContext's extradata[_size] field: * * AVCodecContext.extradata = pointer to ImageDescription, first characters  * are expected to be 'S', 'V', 'Q', and '3', NOT the 4-byte atom length * AVCodecContext.extradata_size = size of ImageDescription atom memory  * buffer (which will be the same as the ImageDescription atom size field  * from the QT file, minus 4 bytes since the length is missing) * * You will know you have these parameters passed correctly when the decoder * correctly decodes this file: *  ftp://ftp.mplayerhq.hu/MPlayer/samples/V-codecs/SVQ3/Vertical400kbit.sorenson3.mov * */ /** * @file svq3.c * svq3 decoder. */#define FULLPEL_MODE  1 #define HALFPEL_MODE  2 #define THIRDPEL_MODE 3#define PREDICT_MODE  4 /* dual scan (from some older h264 draft) o-->o-->o   o         |  /| o   o   o / o | / |   |/  | o   o   o   o   /  o-->o-->o-->o*/static const uint8_t svq3_scan[16]={ 0+0*4, 1+0*4, 2+0*4, 2+1*4, 2+2*4, 3+0*4, 3+1*4, 3+2*4, 0+1*4, 0+2*4, 1+1*4, 1+2*4, 0+3*4, 1+3*4, 2+3*4, 3+3*4,};static const uint8_t svq3_pred_0[25][2] = {  { 0, 0 },  { 1, 0 }, { 0, 1 },  { 0, 2 }, { 1, 1 }, { 2, 0 },  { 3, 0 }, { 2, 1 }, { 1, 2 }, { 0, 3 },  { 0, 4 }, { 1, 3 }, { 2, 2 }, { 3, 1 }, { 4, 0 },  { 4, 1 }, { 3, 2 }, { 2, 3 }, { 1, 4 },  { 2, 4 }, { 3, 3 }, { 4, 2 },  { 4, 3 }, { 3, 4 },  { 4, 4 }};static const int8_t svq3_pred_1[6][6][5] = {  { { 2,-1,-1,-1,-1 }, { 2, 1,-1,-1,-1 }, { 1, 2,-1,-1,-1 },    { 2, 1,-1,-1,-1 }, { 1, 2,-1,-1,-1 }, { 1, 2,-1,-1,-1 } },  { { 0, 2,-1,-1,-1 }, { 0, 2, 1, 4, 3 }, { 0, 1, 2, 4, 3 },    { 0, 2, 1, 4, 3 }, { 2, 0, 1, 3, 4 }, { 0, 4, 2, 1, 3 } },  { { 2, 0,-1,-1,-1 }, { 2, 1, 0, 4, 3 }, { 1, 2, 4, 0, 3 },    { 2, 1, 0, 4, 3 }, { 2, 1, 4, 3, 0 }, { 1, 2, 4, 0, 3 } },  { { 2, 0,-1,-1,-1 }, { 2, 0, 1, 4, 3 }, { 1, 2, 0, 4, 3 },    { 2, 1, 0, 4, 3 }, { 2, 1, 3, 4, 0 }, { 2, 4, 1, 0, 3 } },  { { 0, 2,-1,-1,-1 }, { 0, 2, 1, 3, 4 }, { 1, 2, 3, 0, 4 },    { 2, 0, 1, 3, 4 }, { 2, 1, 3, 0, 4 }, { 2, 0, 4, 3, 1 } },  { { 0, 2,-1,-1,-1 }, { 0, 2, 4, 1, 3 }, { 1, 4, 2, 0, 3 },    { 4, 2, 0, 1, 3 }, { 2, 0, 1, 4, 3 }, { 4, 2, 1, 0, 3 } },};static const struct { uint8_t run; uint8_t level; } svq3_dct_tables[2][16] = {  { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 2, 1 }, { 0, 2 }, { 3, 1 }, { 4, 1 }, { 5, 1 },    { 0, 3 }, { 1, 2 }, { 2, 2 }, { 6, 1 }, { 7, 1 }, { 8, 1 }, { 9, 1 }, { 0, 4 } },  { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 0, 2 }, { 2, 1 }, { 0, 3 }, { 0, 4 }, { 0, 5 },    { 3, 1 }, { 4, 1 }, { 1, 2 }, { 1, 3 }, { 0, 6 }, { 0, 7 }, { 0, 8 }, { 0, 9 } }};static const uint32_t svq3_dequant_coeff[32] = {   3881,  4351,  4890,  5481,  6154,  6914,  7761,  8718,   9781, 10987, 12339, 13828, 15523, 17435, 19561, 21873,  24552, 27656, 30847, 34870, 38807, 43747, 49103, 54683,  61694, 68745, 77615, 89113,100253,109366,126635,141533};static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp){    const int qmul= svq3_dequant_coeff[qp];#define stride 16    int i;    int temp[16];    static const int x_offset[4]={0, 1*stride, 4* stride,  5*stride};    static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};    for(i=0; i<4; i++){        const int offset= y_offset[i];        const int z0= 13*(block[offset+stride*0] +    block[offset+stride*4]);        const int z1= 13*(block[offset+stride*0] -    block[offset+stride*4]);        const int z2=  7* block[offset+stride*1] - 17*block[offset+stride*5];        const int z3= 17* block[offset+stride*1] +  7*block[offset+stride*5];        temp[4*i+0]= z0+z3;        temp[4*i+1]= z1+z2;        temp[4*i+2]= z1-z2;        temp[4*i+3]= z0-z3;    }    for(i=0; i<4; i++){        const int offset= x_offset[i];        const int z0= 13*(temp[4*0+i] +    temp[4*2+i]);        const int z1= 13*(temp[4*0+i] -    temp[4*2+i]);        const int z2=  7* temp[4*1+i] - 17*temp[4*3+i];        const int z3= 17* temp[4*1+i] +  7*temp[4*3+i];        block[stride*0 +offset]= ((z0 + z3)*qmul + 0x80000)>>20;        block[stride*2 +offset]= ((z1 + z2)*qmul + 0x80000)>>20;        block[stride*8 +offset]= ((z1 - z2)*qmul + 0x80000)>>20;        block[stride*10+offset]= ((z0 - z3)*qmul + 0x80000)>>20;    }}#undef stridestatic void svq3_add_idct_c (uint8_t *dst, DCTELEM *block, int stride, int qp, int dc){    const int qmul= svq3_dequant_coeff[qp];    int i;    uint8_t *cm = cropTbl + MAX_NEG_CROP;    if (dc) {        dc = 13*13*((dc == 1) ? 1538*block[0] : ((qmul*(block[0] >> 3)) / 2));        block[0] = 0;    }    for (i=0; i < 4; i++) {        const int z0= 13*(block[0 + 4*i] +    block[2 + 4*i]);        const int z1= 13*(block[0 + 4*i] -    block[2 + 4*i]);        const int z2=  7* block[1 + 4*i] - 17*block[3 + 4*i];        const int z3= 17* block[1 + 4*i] +  7*block[3 + 4*i];        block[0 + 4*i]= z0 + z3;        block[1 + 4*i]= z1 + z2;        block[2 + 4*i]= z1 - z2;        block[3 + 4*i]= z0 - z3;    }    for (i=0; i < 4; i++) {        const int z0= 13*(block[i + 4*0] +    block[i + 4*2]);        const int z1= 13*(block[i + 4*0] -    block[i + 4*2]);        const int z2=  7* block[i + 4*1] - 17*block[i + 4*3];        const int z3= 17* block[i + 4*1] +  7*block[i + 4*3];        const int rr= (dc + 0x80000);        dst[i + stride*0]= cm[ dst[i + stride*0] + (((z0 + z3)*qmul + rr) >> 20) ];        dst[i + stride*1]= cm[ dst[i + stride*1] + (((z1 + z2)*qmul + rr) >> 20) ];        dst[i + stride*2]= cm[ dst[i + stride*2] + (((z1 - z2)*qmul + rr) >> 20) ];        dst[i + stride*3]= cm[ dst[i + stride*3] + (((z0 - z3)*qmul + rr) >> 20) ];    }}static void pred4x4_down_left_svq3_c(uint8_t *src, uint8_t *topright, int stride){    LOAD_TOP_EDGE        LOAD_LEFT_EDGE        const __attribute__((unused)) int unu0= t0;    const __attribute__((unused)) int unu1= l0;    src[0+0*stride]=(l1 + t1)>>1;    src[1+0*stride]=    src[0+1*stride]=(l2 + t2)>>1;    src[2+0*stride]=    src[1+1*stride]=    src[0+2*stride]=    src[3+0*stride]=    src[2+1*stride]=    src[1+2*stride]=    src[0+3*stride]=    src[3+1*stride]=    src[2+2*stride]=    src[1+3*stride]=    src[3+2*stride]=    src[2+3*stride]=    src[3+3*stride]=(l3 + t3)>>1;}static void pred16x16_plane_svq3_c(uint8_t *src, int stride){    pred16x16_plane_compat_c(src, stride, 1);}static inline int svq3_decode_block (GetBitContext *gb, DCTELEM *block,				     int index, const int type) {  static const uint8_t *const scan_patterns[4] =  { luma_dc_zigzag_scan, zigzag_scan, svq3_scan, chroma_dc_scan };  int run, level, sign, vlc, limit;  const int intra = (3 * type) >> 2;  const uint8_t *const scan = scan_patterns[type];  for (limit=(16 >> intra); index < 16; index=limit, limit+=8) {    for (; (vlc = svq3_get_ue_golomb (gb)) != 0; index++) {      if (vlc == INVALID_VLC)	return -1;      sign = (vlc & 0x1) - 1;      vlc  = (vlc + 1) >> 1;      if (type == 3) {	if (vlc < 3) {	  run   = 0;	  level = vlc;	} else if (vlc < 4) {	  run   = 1;	  level = 1;	} else {	  run   = (vlc & 0x3);	  level = ((vlc + 9) >> 2) - run;	}      } else {	if (vlc < 16) {	  run   = svq3_dct_tables[intra][vlc].run;	  level = svq3_dct_tables[intra][vlc].level;	} else if (intra) {	  run   = (vlc & 0x7);	  level = (vlc >> 3) + ((run == 0) ? 8 : ((run < 2) ? 2 : ((run < 5) ? 0 : -1)));	} else {	  run   = (vlc & 0xF);	  level = (vlc >> 4) + ((run == 0) ? 4 : ((run < 3) ? 2 : ((run < 10) ? 1 : 0)));	}      }      if ((index += run) >= limit)	return -1;      block[scan[index]] = (level ^ sign) - sign;    }    if (type != 2) {      break;    }  }  return 0;}static inline void svq3_mc_dir_part (MpegEncContext *s,				     int x, int y, int width, int height,				     int mx, int my, int dxy,				     int thirdpel, int dir, int avg) {  const Picture *pic = (dir == 0) ? &s->last_picture : &s->next_picture;  uint8_t *src, *dest;  int i, emu = 0;  int blocksize= 2 - (width>>3); //16->0, 8->1, 4->2  mx += x;  my += y;    if (mx < 0 || mx >= (s->h_edge_pos - width  - 1) ||      my < 0 || my >= (s->v_edge_pos - height - 1)) {    if ((s->flags & CODEC_FLAG_EMU_EDGE)) {      emu = 1;    }    mx = clip (mx, -16, (s->h_edge_pos - width  + 15));    my = clip (my, -16, (s->v_edge_pos - height + 15));  }  /* form component predictions */  dest = s->current_picture.data[0] + x + y*s->linesize;  src  = pic->data[0] + mx + my*s->linesize;  if (emu) {    ff_emulated_edge_mc (s->edge_emu_buffer, src, s->linesize, (width + 1), (height + 1),			 mx, my, s->h_edge_pos, s->v_edge_pos);    src = s->edge_emu_buffer;  }  if(thirdpel)    (avg ? s->dsp.avg_tpel_pixels_tab : s->dsp.put_tpel_pixels_tab)[dxy](dest, src, s->linesize, width, height);  else    (avg ? s->dsp.avg_pixels_tab : s->dsp.put_pixels_tab)[blocksize][dxy](dest, src, s->linesize, height);  if (!(s->flags & CODEC_FLAG_GRAY)) {    mx	   = (mx + (mx < (int) x)) >> 1;    my	   = (my + (my < (int) y)) >> 1;    width  = (width  >> 1);    height = (height >> 1);    blocksize++;    for (i=1; i < 3; i++) {      dest = s->current_picture.data[i] + (x >> 1) + (y >> 1)*s->uvlinesize;      src  = pic->data[i] + mx + my*s->uvlinesize;      if (emu) {        ff_emulated_edge_mc (s->edge_emu_buffer, src, s->uvlinesize, (width + 1), (height + 1),			     mx, my, (s->h_edge_pos >> 1), (s->v_edge_pos >> 1));        src = s->edge_emu_buffer;      }      if(thirdpel)        (avg ? s->dsp.avg_tpel_pixels_tab : s->dsp.put_tpel_pixels_tab)[dxy](dest, src, s->uvlinesize, width, height);      else        (avg ? s->dsp.avg_pixels_tab : s->dsp.put_pixels_tab)[blocksize][dxy](dest, src, s->uvlinesize, height);    }  }}static inline int svq3_mc_dir (H264Context *h, int size, int mode, int dir, int avg) {  int i, j, k, mx, my, dx, dy, x, y;  MpegEncContext *const s = (MpegEncContext *) h;  const int part_width  = ((size & 5) == 4) ? 4 : 16 >> (size & 1);  const int part_height = 16 >> ((unsigned) (size + 1) / 3);  const int extra_width = (mode == PREDICT_MODE) ? -16*6 : 0;  const int h_edge_pos  = 6*(s->h_edge_pos - part_width ) - extra_width;  const int v_edge_pos  = 6*(s->v_edge_pos - part_height) - extra_width;  for (i=0; i < 16; i+=part_height) {    for (j=0; j < 16; j+=part_width) {      const int b_xy = (4*s->mb_x+(j>>2)) + (4*s->mb_y+(i>>2))*h->b_stride;      int dxy;      x = 16*s->mb_x + j;      y = 16*s->mb_y + i;      k = ((j>>2)&1) + ((i>>1)&2) + ((j>>1)&4) + (i&8);      if (mode != PREDICT_MODE) {	pred_motion (h, k, (part_width >> 2), dir, 1, &mx, &my);      } else {	mx = s->next_picture.motion_val[0][b_xy][0]<<1;	my = s->next_picture.motion_val[0][b_xy][1]<<1;	if (dir == 0) {	  mx = ((mx * h->frame_num_offset) / h->prev_frame_num_offset + 1)>>1;	  my = ((my * h->frame_num_offset) / h->prev_frame_num_offset + 1)>>1;	} else {	  mx = ((mx * (h->frame_num_offset - h->prev_frame_num_offset)) / h->prev_frame_num_offset + 1)>>1;	  my = ((my * (h->frame_num_offset - h->prev_frame_num_offset)) / h->prev_frame_num_offset + 1)>>1;	}      }      /* clip motion vector prediction to frame border */      mx = clip (mx, extra_width - 6*x, h_edge_pos - 6*x);      my = clip (my, extra_width - 6*y, v_edge_pos - 6*y);      /* get (optional) motion vector differential */      if (mode == PREDICT_MODE) {	dx = dy = 0;      } else {	dy = svq3_get_se_golomb (&s->gb);	dx = svq3_get_se_golomb (&s->gb);	if (dx == INVALID_VLC || dy == INVALID_VLC) {	  return -1;	}      }      /* compute motion vector */      if (mode == THIRDPEL_MODE) {	int fx, fy;	mx = ((mx + 1)>>1) + dx;	my = ((my + 1)>>1) + dy;	fx= ((unsigned)(mx + 0x3000))/3 - 0x1000;	fy= ((unsigned)(my + 0x3000))/3 - 0x1000;	dxy= (mx - 3*fx) + 4*(my - 3*fy);	svq3_mc_dir_part (s, x, y, part_width, part_height, fx, fy, dxy, 1, dir, avg);	mx += mx;	my += my;      } else if (mode == HALFPEL_MODE || mode == PREDICT_MODE) {	mx = ((unsigned)(mx + 1 + 0x3000))/3 + dx - 0x1000;	my = ((unsigned)(my + 1 + 0x3000))/3 + dy - 0x1000;	dxy= (mx&1) + 2*(my&1);	svq3_mc_dir_part (s, x, y, part_width, part_height, mx>>1, my>>1, dxy, 0, dir, avg);	mx *= 3;	my *= 3;      } else {	mx = ((unsigned)(mx + 3 + 0x6000))/6 + dx - 0x1000;	my = ((unsigned)(my + 3 + 0x6000))/6 + dy - 0x1000;	svq3_mc_dir_part (s, x, y, part_width, part_height, mx, my, 0, 0, dir, avg);	mx *= 6;	my *= 6;      }      /* update mv_cache */      if (mode != PREDICT_MODE) {	int32_t mv = pack16to32(mx,my);	if (part_height == 8 && i < 8) {	  *(int32_t *) h->mv_cache[dir][scan8[k] + 1*8] = mv;	  if (part_width == 8 && j < 8) {	    *(int32_t *) h->mv_cache[dir][scan8[k] + 1 + 1*8] = mv;	  }	}	if (part_width == 8 && j < 8) {	  *(int32_t *) h->mv_cache[dir][scan8[k] + 1] = mv;	}	if (part_width == 4 || part_height == 4) {	  *(int32_t *) h->mv_cache[dir][scan8[k]] = mv;	}      }      /* write back motion vectors */      fill_rectangle(s->current_picture.motion_val[dir][b_xy], part_width>>2, part_height>>2, h->b_stride, pack16to32(mx,my), 4);    }  }  return 0;}static int svq3_decode_mb (H264Context *h, unsigned int mb_type) {  int i, j, k, m, dir, mode;  int cbp = 0;  uint32_t vlc;  int8_t *top, *left;  MpegEncContext *const s = (MpegEncContext *) h;  const int mb_xy = s->mb_x + s->mb_y*s->mb_stride;  const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;  h->top_samples_available	= (s->mb_y == 0) ? 0x33FF : 0xFFFF;  h->left_samples_available	= (s->mb_x == 0) ? 0x5F5F : 0xFFFF;  h->topright_samples_available	= 0xFFFF;  if (mb_type == 0) {		/* SKIP */    if (s->pict_type == P_TYPE || s->next_picture.mb_type[mb_xy] == -1) {      svq3_mc_dir_part (s, 16*s->mb_x, 16*s->mb_y, 16, 16, 0, 0, 0, 0, 0, 0);      if (s->pict_type == B_TYPE) {	svq3_mc_dir_part (s, 16*s->mb_x, 16*s->mb_y, 16, 16, 0, 0, 0, 0, 1, 1);      }      mb_type = MB_TYPE_SKIP;    } else {      svq3_mc_dir (h, s->next_picture.mb_type[mb_xy], PREDICT_MODE, 0, 0);      svq3_mc_dir (h, s->next_picture.mb_type[mb_xy], PREDICT_MODE, 1, 1);      mb_type = MB_TYPE_16x16;    }  } else if (mb_type < 8) {	/* INTER */    if (h->thirdpel_flag && h->halfpel_flag == !get_bits (&s->gb, 1)) {      mode = THIRDPEL_MODE;    } else if (h->halfpel_flag && h->thirdpel_flag == !get_bits (&s->gb, 1)) {      mode = HALFPEL_MODE;    } else {      mode = FULLPEL_MODE;    }    /* fill caches */    /* note ref_cache should contain here:        ????????        ???11111        N??11111        N??11111        N??11111        N    */        for (m=0; m < 2; m++) {      if (s->mb_x > 0 && h->intra4x4_pred_mode[mb_xy - 1][0] != -1) {	for (i=0; i < 4; i++) {	  *(uint32_t *) h->mv_cache[m][scan8[0] - 1 + i*8] = *(uint32_t *) s->current_picture.motion_val[m][b_xy - 1 + i*h->b_stride];	}      } else {

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -