⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 r_fft.c

📁 Trolltech公司发布的图形界面操作系统。可在qt-embedded-2.3.10平台上编译为嵌入式图形界面操作系统。
💻 C
字号:
/********************************************************************************      GSM AMR-NB speech codec   R98   Version 7.6.0   December 12, 2001*                                R99   Version 3.3.0                *                                REL-4 Version 4.1.0                ********************************************************************************      File             : r_fft.c*      Purpose          : Fast Fourier Transform (FFT) algorithm*******************************************************************************//******************************************************************* This is an implementation of decimation-in-time FFT algorithm for* real sequences.  The techniques used here can be found in several* books, e.g., i) Proakis and Manolakis, "Digital Signal Processing",* 2nd Edition, Chapter 9, and ii) W.H. Press et. al., "Numerical* Recipes in C", 2nd Ediiton, Chapter 12.** Input -  There is one input to this function:**	1) An integer pointer to the input data array ** Output - There is no return value.*	The input data are replaced with transformed data.  If the*	input is a real time domain sequence, it is replaced with*	the complex FFT for positive frequencies.  The FFT value *	for DC and the foldover frequency are combined to form the*	first complex number in the array.  The remaining complex*	numbers correspond to increasing frequencies.  If the input*	is a complex frequency domain sequence arranged	as above,*	it is replaced with the corresponding time domain sequence. ** Notes:**	1) This function is designed to be a part of a VAD*	   algorithm that requires 128-point FFT of real*	   sequences.  This is achieved here through a 64-point*	   complex FFT.  Consequently, the FFT size information is*	   not transmitted explicitly.  However, some flexibility*	   is provided in the function to change the size of the *	   FFT by specifying the size information through "define"*	   statements.**	2) The values of the complex sinusoids used in the FFT *	   algorithm are stored in a ROM table.**	3) In the c_fft function, the FFT values are divided by*	   2 after each stage of computation thus dividing the*	   final FFT values by 64.  This is somewhat different*          from the usual definition of FFT where the factor 1/N,*          i.e., 1/64, used for the IFFT and not the FFT.  No factor*          is used in the r_fft function.******************************************************************/const char r_fft_id[] = "@(#)$Id $";#include "typedef.h"#include "cnst.h"#include "basic_op.h"#include "oper_32b.h"#include "count.h"#include "vad2.h"#define			SIZE			128#define			SIZE_BY_TWO		64#define			NUM_STAGE		6#define			TRUE			1#define			FALSE			0static Word16 phs_tbl[] ={	32767, 0, 32729, -1608, 32610, -3212, 32413, -4808,	32138, -6393, 31786, -7962, 31357, -9512, 30853, -11039,	30274, -12540, 29622, -14010, 28899, -15447, 28106, -16846,	27246, -18205, 26320, -19520, 25330, -20788, 24279, -22006,	23170, -23170, 22006, -24279, 20788, -25330, 19520, -26320,	18205, -27246, 16846, -28106, 15447, -28899, 14010, -29622,	12540, -30274, 11039, -30853, 9512, -31357, 7962, -31786,	6393, -32138, 4808, -32413, 3212, -32610, 1608, -32729,	0, -32768, -1608, -32729, -3212, -32610, -4808, -32413,	-6393, -32138, -7962, -31786, -9512, -31357, -11039, -30853,	-12540, -30274, -14010, -29622, -15447, -28899, -16846, -28106,	-18205, -27246, -19520, -26320, -20788, -25330, -22006, -24279,	-23170, -23170, -24279, -22006, -25330, -20788, -26320, -19520,	-27246, -18205, -28106, -16846, -28899, -15447, -29622, -14010,	-30274, -12540, -30853, -11039, -31357, -9512, -31786, -7962,	-32138, -6393, -32413, -4808, -32610, -3212, -32729, -1608};static Word16 ii_table[] ={SIZE / 2, SIZE / 4, SIZE / 8, SIZE / 16, SIZE / 32, SIZE / 64};/* FFT function for complex sequences *//* * The decimation-in-time complex FFT is implemented below. * The input complex numbers are presented as real part followed by * imaginary part for each sample.  The counters are therefore * incremented by two to access the complex valued samples. */void c_fft(Word16 * farray_ptr){	Word16 i, j, k, ii, jj, kk, ji, kj, ii2;	Word32 ftmp, ftmp_real, ftmp_imag;	Word16 tmp, tmp1, tmp2;	/* Rearrange the input array in bit reversed order */	for (i = 0, j = 0; i < SIZE - 2; i = i + 2)	{										test();		if (sub(j, i) > 0)		{			ftmp = *(farray_ptr + i);					move16();			*(farray_ptr + i) = *(farray_ptr + j);				move16();			*(farray_ptr + j) = ftmp;					move16();			ftmp = *(farray_ptr + i + 1);					move16();			*(farray_ptr + i + 1) = *(farray_ptr + j + 1);			move16();			*(farray_ptr + j + 1) = ftmp;					move16();		}		k = SIZE_BY_TWO;							move16();											test();		while (sub(j, k) >= 0)		{			j = sub(j, k);			k = shr(k, 1);		}		j = add(j, k);	}	/* The FFT part */	for (i = 0; i < NUM_STAGE; i++)	{				/* i is stage counter */		jj = shl(2, i);		/* FFT size */		kk = shl(jj, 1);	/* 2 * FFT size */		ii = ii_table[i];	/* 2 * number of FFT's */			move16();		ii2 = shl(ii, 1);		ji = 0;			/* ji is phase table index */			move16();		for (j = 0; j < jj; j = j + 2)		{					/* j is sample counter */			for (k = j; k < SIZE; k = k + kk)			{				/* k is butterfly top */				kj = add(k, jj);	/* kj is butterfly bottom */				/* Butterfly computations */				ftmp_real = L_mult(*(farray_ptr + kj), phs_tbl[ji]);				ftmp_real = L_msu(ftmp_real, *(farray_ptr + kj + 1), phs_tbl[ji + 1]);				ftmp_imag = L_mult(*(farray_ptr + kj + 1), phs_tbl[ji]);				ftmp_imag = L_mac(ftmp_imag, *(farray_ptr + kj), phs_tbl[ji + 1]);				tmp1 = round(ftmp_real);				tmp2 = round(ftmp_imag);				tmp = sub(*(farray_ptr + k), tmp1);				*(farray_ptr + kj) = shr(tmp, 1);			move16();				tmp = sub(*(farray_ptr + k + 1), tmp2);				*(farray_ptr + kj + 1) = shr(tmp, 1);			move16();				tmp = add(*(farray_ptr + k), tmp1);				*(farray_ptr + k) = shr(tmp, 1);			move16();				tmp = add(*(farray_ptr + k + 1), tmp2);				*(farray_ptr + k + 1) = shr(tmp, 1);			move16();			}			ji =  add(ji, ii2);		}	}}								/* end of c_fft () */void r_fft(Word16 * farray_ptr){	Word16 ftmp1_real, ftmp1_imag, ftmp2_real, ftmp2_imag;	Word32 Lftmp1_real, Lftmp1_imag;	Word16 i, j;	Word32 Ltmp1;	/* Perform the complex FFT */	c_fft(farray_ptr);	/* First, handle the DC and foldover frequencies */	ftmp1_real = *farray_ptr;							move16();	ftmp2_real = *(farray_ptr + 1);							move16();	*farray_ptr = add(ftmp1_real, ftmp2_real);					move16();	*(farray_ptr + 1) = sub(ftmp1_real, ftmp2_real);				move16();	/* Now, handle the remaining positive frequencies */	for (i = 2, j = SIZE - i; i <= SIZE_BY_TWO; i = i + 2, j = SIZE - i)	{		ftmp1_real = add(*(farray_ptr + i), *(farray_ptr + j));		ftmp1_imag = sub(*(farray_ptr + i + 1), *(farray_ptr + j + 1));		ftmp2_real = add(*(farray_ptr + i + 1), *(farray_ptr + j + 1));		ftmp2_imag = sub(*(farray_ptr + j), *(farray_ptr + i));		Lftmp1_real = L_deposit_h(ftmp1_real);		Lftmp1_imag = L_deposit_h(ftmp1_imag);		Ltmp1 = L_mac(Lftmp1_real, ftmp2_real, phs_tbl[i]);		Ltmp1 = L_msu(Ltmp1, ftmp2_imag, phs_tbl[i + 1]);		*(farray_ptr + i) = round(L_shr(Ltmp1, 1));				move16();		Ltmp1 = L_mac(Lftmp1_imag, ftmp2_imag, phs_tbl[i]);		Ltmp1 = L_mac(Ltmp1, ftmp2_real, phs_tbl[i + 1]);		*(farray_ptr + i + 1) = round(L_shr(Ltmp1, 1));				move16();		Ltmp1 = L_mac(Lftmp1_real, ftmp2_real, phs_tbl[j]);		Ltmp1 = L_mac(Ltmp1, ftmp2_imag, phs_tbl[j + 1]);		*(farray_ptr + j) = round(L_shr(Ltmp1, 1));				move16();		Ltmp1 = L_negate(Lftmp1_imag);		Ltmp1 = L_msu(Ltmp1, ftmp2_imag, phs_tbl[j]);		Ltmp1 = L_mac(Ltmp1, ftmp2_real, phs_tbl[j + 1]);		*(farray_ptr + j + 1) = round(L_shr(Ltmp1, 1));				move16();	}}								/* end r_fft () */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -