📄 imageprocessor.cpp
字号:
/************************************************************************ Copyright (C) 2000-2005 Trolltech AS. All rights reserved.**** This file is part of the Qtopia Environment.** ** This program is free software; you can redistribute it and/or modify it** under the terms of the GNU General Public License as published by the** Free Software Foundation; either version 2 of the License, or (at your** option) any later version.** ** A copy of the GNU GPL license version 2 is included in this package as ** LICENSE.GPL.**** This program is distributed in the hope that it will be useful, but** WITHOUT ANY WARRANTY; without even the implied warranty of** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. ** See the GNU General Public License for more details.**** In addition, as a special exception Trolltech gives permission to link** the code of this program with Qtopia applications copyrighted, developed** and distributed by Trolltech under the terms of the Qtopia Personal Use** License Agreement. You must comply with the GNU General Public License** in all respects for all of the code used other than the applications** licensed under the Qtopia Personal Use License Agreement. If you modify** this file, you may extend this exception to your version of the file,** but you are not obligated to do so. If you do not wish to do so, delete** this exception statement from your version.** ** See http://www.trolltech.com/gpl/ for GPL licensing information.**** Contact info@trolltech.com if any conditions of this licensing are** not clear to you.************************************************************************/#include "imageprocessor.h"#include "imageio.h"#include <cmath>#define LIMIT( X, Y, Z ) ( (X) > (Y) ? (X) > (Z) ? (Z) : (X) : (Y) )inline QRect operator*( const QRect& rect, double d ){ QRect r( rect ); r.setTop( (int)floor( r.top() * d ) ); r.setLeft( (int)floor( r.left() * d ) ); r.setBottom( (int)floor( r.bottom() * d ) ); r.setRight( (int)floor( r.right() * d ) ); return r;}inline QRect operator/( const QRect& rect, double d ){ QRect r( rect ); r.setTop( (int)ceil( r.top() / d ) ); r.setLeft( (int)ceil( r.left() / d ) ); r.setBottom( (int)ceil( r.bottom() / d ) ); r.setRight( (int)ceil( r.right() / d ) ); return r;}inline QImage scale( const QImage& image, int width, int height ){#define PRECISION 16 QImage buffer( width, height, image.depth() ); buffer.setAlphaBuffer( image.hasAlphaBuffer() ); if( width && height ) { // Calculate mapping factors uint factor_x = ( image.width() << PRECISION ) / width; uint factor_y = ( image.height() << PRECISION ) / height; QRgb **src = ( QRgb** )image.jumpTable(); QRgb **dest = ( QRgb** )buffer.jumpTable(); // For each pixel in buffer uint y = 0; for( int j = 0; j < buffer.height(); ++j ) { uint yd = y >> PRECISION; uint x = 0; for( int i = 0; i < buffer.width(); ++i ) { // Calculate position in image // Copy pixel value from image into buffer dest[ j ][ i ] = src[ yd ][ x >> PRECISION ]; x += factor_x; } y += factor_y; } } return buffer;}ImageProcessor::ImageProcessor( ImageIO* iio, QObject* parent, const char* name ) : QObject( parent, name ), image_io( iio ), brightness_factor( 0 ), zoom_factor( 1.0 ){ // Clear transformations when image changes in image io connect( image_io, SIGNAL( changed() ), this, SLOT( reset() ) );}void ImageProcessor::crop( const QRect& rect ){ // Crop image to area within rect viewport = unmap( rect ).intersect( viewport ); // Notify of change to image emit changed();}QPoint ImageProcessor::map( const QPoint& point ) const{ QPoint p( point ); // Apply transformations to point p = transformation_matrix.map( p ); // Calculate displacement to make transformed image positive QRect space( transformation_matrix.map( viewport ).normalize() ); // Apply displacement to point // Scale point by zoom factor p.setX( (int)floor( ( p.x() - space.x() ) * zoom_factor ) ); p.setY( (int)floor( ( p.y() - space.y() ) * zoom_factor ) ); return p;}QPoint ImageProcessor::unmap( const QPoint& point ) const{ // Sacle point by inverse of zoom factor QPoint p( (int)ceil( point.x() / zoom_factor ), (int)ceil( point.y() / zoom_factor ) ); // Calculate displacement to make transformed image positive QRect space( transformation_matrix.map( viewport ).normalize() ); // Reverse displacement of point p.setX( p.x() + space.x() ); p.setY( p.y() + space.y() ); // Apply the inverse transformations to point return transformation_matrix.inverse().map( p );}const QPixmap& ImageProcessor::preview( const QRect& rect ) const{ // Reverse transformations to rect // Limit area to within viewport QRect area( unmap( rect ).intersect( viewport ) ); // Retrive sample from image io QImage sample = image_io->image( area, image_io->level( zoom_factor ) ); // Apply transformations to image sample = transform( sample, sample.rect() ); // Scale up area = map( area ); return _preview = scale( sample, area.width(), area.height() );}QImage ImageProcessor::image() const{ return transform( image_io->image(), viewport );}QImage ImageProcessor::image( const QSize& target ) const{#define REDUCTION_RATIO( dw, dh, sw, sh ) \ ( (dw)*(sh) > (dh)*(sw) ? (double)(dh)/(double)(sh) : \ (double)(dw)/(double)(sw) ) // Determine reduction ratio for tranformed image QSize transformed( transformation_matrix.map( viewport ).normalize(). size() ); double reduction_ratio = REDUCTION_RATIO( target.width(), target.height(), transformed.width(), transformed.height() ); // Determine image level closest to reduction ratio int closest_level = image_io->level( reduction_ratio ); // Reduce viewport by the factor of the closest level double level_factor = image_io->factor( closest_level ); QRect reduced_viewport( viewport.topLeft() * level_factor, viewport.bottomRight() * level_factor ); // Retrive image at closest level and apply transformations QImage sample( transform( image_io->image( closest_level ), reduced_viewport ) ); // Scale image up to size double scale_factor = reduction_ratio / level_factor; return sample.smoothScale( (int)( sample.width() * scale_factor ), (int)( sample.height() * scale_factor ) );}QSize ImageProcessor::size() const{ int width, height; transformation_matrix.map( viewport.width(), viewport.height(), &width, &height ); return QSize( QABS( (int)( width * zoom_factor ) ), QABS( (int)( height * zoom_factor ) ) );}bool ImageProcessor::isChanged() const{ return transformation_matrix != Matrix() || brightness_factor || viewport != QRect( QPoint( 0, 0 ), image_io->size() );}void ImageProcessor::setZoom( double factor ){ // Set zoom factor zoom_factor = factor; // Notify of change to image emit changed();}void ImageProcessor::setBrightness( double factor ){ // Set brightness factor brightness_factor = factor; // Notify of change to image emit changed();}void ImageProcessor::rotate(){#define COS_90 0#define SIN_90 1 // Multiply a rotation matrix of 90 deg clockwise to transformation matrix transformation_matrix *= Matrix( COS_90, SIN_90, -SIN_90, COS_90 ); // Notify of change to image emit changed();}void ImageProcessor::reset(){ // Reset transformations and notify of change brightness_factor = 0; zoom_factor = 1.0; transformation_matrix = Matrix(); viewport = QRect( QPoint( 0, 0 ), image_io->size() ); emit changed();}QRect ImageProcessor::map( const QRect& rect ) const{ // Apply transformations to rect QRect r( transformation_matrix.map( rect ).normalize() ); // Calculate displacement to make transformed image positive QRect space( transformation_matrix.map( viewport ).normalize() ); // Apply displacement to rect r.moveBy( -space.x(), -space.y() ); // Scale rect by zoom factor return r * zoom_factor;}QRect ImageProcessor::unmap( const QRect& rect ) const{ // Sacle rect by inverse of zoom factor QRect r( rect / zoom_factor ); // Calculate displacement to make transformed image positive QRect space( transformation_matrix.map( viewport ).normalize() ); // Reverse displacement of rect r.moveBy( space.x(), space.y() ); // Apply the inverse transformations to rect return transformation_matrix.inverse().map( r ).normalize();}QImage ImageProcessor::transform( const QImage& image, const QRect& area ) const{#define RGB_MIN 0#define RGB_MAX 255 // Determine size of final image // Calculate displacement to make transformed image positive QRect space( transformation_matrix.map( area ).normalize() ); // Construct image buffer QImage buffer( space.width(), space.height(), image.depth() ); buffer.setAlphaBuffer( image.hasAlphaBuffer() ); int brightness = (int)( RGB_MAX * brightness_factor ); // For each pixel in area QRgb **src = ( QRgb** )image.jumpTable(); QRgb **dest = ( QRgb** )buffer.jumpTable(); int bottom = QMIN( area.bottom() + 1, image.height() ); int right = QMIN( area.right() + 1, image.width() ); // xd = a*x + c*y + dx // yd = b*x + d*y + dy int cx = area.left() * transformation_matrix.a() + area.top() * transformation_matrix.c() - space.x(); int cy = area.left() * transformation_matrix.b() + area.top() * transformation_matrix.d() - space.y(); for( int j = area.top(); j < bottom; ++j ) { int x = cx; int y = cy; for( int i = area.left(); i < right; ++i ) { // Determine location of pixel after transformations applied // Apply transfromations and store in image buffer QRgb pixel = src[ j ][ i ]; int r = qRed( pixel ) + brightness; int g = qGreen( pixel ) + brightness; int b = qBlue( pixel ) + brightness; dest[ y ][ x ] = ( pixel & 0xff000000 ) | ( LIMIT( r, RGB_MIN, RGB_MAX ) << 16 ) | ( LIMIT( g, RGB_MIN, RGB_MAX ) << 8 ) | LIMIT( b, RGB_MIN, RGB_MAX ); x += transformation_matrix.a(); y += transformation_matrix.b(); } cx += transformation_matrix.c(); cy += transformation_matrix.d(); } return buffer;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -